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Fourier Series

From your differential equations course, 18.03,
you know Fourier’s expression representing a
T -periodic time function x(t) as an infinite sum
of sines and cosines at the fundamental fre-
quency and its harmonics, plus a constant term
equal to the average value of the time function
over a period:

x(t) = a0+
∞∑

n=1

an cos(nω0t)+bn sin(nω0t) (1)

where

ω0 =
2π

T

a0 =
1

T

∫ T/2

−T/2
x(t) dt (2)

and for integer n > 0

an =
2

T

∫ T/2

−T/2
x(t) cos(nω0t) dt (3)

bn =
2

T

∫ T/2

−T/2
x(t) sin(nω0t) dt (4)
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Some comments on symmetries

1. The integrals could have been taken over

any interval of length T , but the symmetric

interval [−T
2 , T

2 ] is most convenient for us.

2. Note from the defining expressions that if

x(t) is an even function of t, i.e., if

x(−t) = x(t) ,

then bn = 0 for all n > 0, so only cosine

terms appear in the Fourier series.

Similarly, if x(t) is an odd function of t, i.e.,

if

x(−t) = −x(t) ,

then an = 0 for all n ≥ 0, so only sine terms

appear in the Fourier series.
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Recall some useful trigonometric identities

cos(−p) = cos p

sin(−p) = − sin p

cos(p + q) = cos p cos q − sin p sin q

sin(p + q) = sin p cos q + cos p sin q

The latter two are most easily derived from

Euler’s identity:

ejθ = cos θ + j sin θ

where j =
√−1.

From the cosine-sum and sine-sum identities

above, various other identities can be derived,

e.g.,

2 cos p cos q = cos(p + q) + cos(p− q)

2 sin p sin q = cos(p− q)− cos(p + q)

2 sin p cos q = sin(p + q) + sin(p− q)
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Example 1 (sanity check)

Suppose x(t) = K cosω0t, with ω0 > 0. Then

a1 =
2

T

∫ T/2

−T/2
K cos2(ω0t) dt = K

while all other an and all bn are 0. So the

Fourier series for x(t) is simply K cosω0t, as it

should be!

Similarly, the Fourier series for x(t) = K sin(ω0t)

is just this expression itself.
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Example 2 (magnitude and phase)

Suppose x(t) = a cos(ω0t) + b sin(ω0t), with

ω0 > 0. This evidently is periodic with pe-

riod T = 2π/ω0, and its Fourier series will be

the same expression again. But there’s an al-

ternative representation that yields a bit more

insight:

Rewrite x(t) as

x(t) =
√

a2 + b2
(

a√
a2+b2

cos(ω0t) +

b√
a2+b2

sin(ω0t)
)

and let

θ = arctan
(

b

a

)

so

a√
a2 + b2

= cos θ ,
b√

a2 + b2
= sin θ

...→
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Example 2 (continued)

(Construct for yourself a right-angled triangle

that displays the preceding relations among a,

b, and θ.)

Our previous expression for x(t) then becomes

x(t) =
√

a2 + b2
(
cos θ cos(ω0t) + sin θ sin(ω0t)

)

= c cos(ω0t− θ)

where

c =
√

a2 + b2

So adding a cosine and a sine of the same

frequency, but possibly different amplitudes,

yields (perhaps surprisingly) a pure sinusoid

again, with magnitude and phase as specified

above. We refer to the cosine and sine as hav-

ing added ”in quadrature”, because the two

are displaced from each other by 90 degrees

(π/2 radians).
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Magnitude/phase form of Fourier series

The transformation carried out on the x(t) in
the previous example can be equally well ap-
plied to a typical term of the Fourier series in
(1), to obtain

an cos(nω0t) + bn sin(nω0t)

=
√

a2
n + b2n

(
an√

a2
n+b2n

cos(nω0t) +

bn√
a2

n+b2n
sin(nω0t)

)

Letting

θn = arctan
(

bn

an

)

and

cn =
√

a2
n + b2n

for n ≥ 0 (with c0 = a0 and θ0 = 0), we get the
following alternate form of (1) for a T -periodic
function x(t):

x(t) =
∞∑

n=0

cn cos(nω0t− θn) (5)

7



A two-sided Fourier series

It is convenient for many purposes to rewrite

the Fourier series in yet another form, allow-

ing both positive and negative multiples of the

fundamental frequency. To obtain such a two-

sided representation, note that

an cosnω0t =
an

2
cosnω0t +

an

2
cosn(−ω0)t

bn sinnω0t =
bn

2
sinnω0t− bn

2
sinn(−ω0)t

Now for all integer n (negative, zero, and pos-

itive) define

An =
1

T

∫ T/2

−T/2
x(t) cosnω0t dt (6)

Bn = −1

T

∫ T/2

−T/2
x(t) sinnω0t dt (7)

(The minus sign preceding the integral in the

definition of Bn serves to make our notation

consistent with the notation that is widely used

in engineering.) ...→
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Two-sided Fourier series (continued)

From the preceding definitions, we conclude

that A0 = a0, and for n > 0

An =
an

2
= A−n

Bn = −bn

2
= −B−n

With these definitions, the Fourier series for a

T -periodic function x(t) can be written in the

form

x(t) =
∞∑

n=−∞
An cosnω0t−Bn sinnω0t (8)

Note that the summation now runs symmet-

rically over all integer n (negative, zero, and

positive), corresponding to terms at all integer

multiples of the fundamental frequency.
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Magnitude/phase form of two-sided series

By defining

θn = arctan
(

Bn

An

)

and

Xn =
√

A2
n + B2

n

we can write

An = Xn cos θn , Bn = Xn sin θn

Using the now familiar procedure, we can use

the preceding relations to rewrite the two-sided

series in magnitude/phase form as

x(t) =
∞∑

n=−∞
Xn cos(nω0t + θn)
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A step further

Let’s go a small step beyond where you left off

in 18.03:

If x(t) = an cos(nω0t), then the average value

of x2(t) over a period — the ”mean square”

value of x(t) — is

1

T

∫ T/2

−T/2
x2(t) dt =

1

T

∫ T/2

−T/2
a2

n cos2(nω0t) dt

=
a2

n

2

Extending this kind of calculation in a straight-

forward way, and invoking the standard trigono-

metric identities listed earlier, produces the var-

ious equivalent expressions shown on the next

slide for the mean square value of a general

periodic x(t).

...→
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Parseval’s theorem

The mean square value of a T -periodic signal

x(t) is given in terms of its Fourier series co-

efficients by the following expressions:

1

T

∫ T/2

−T/2
x2(t) dt

= a2
0 +

1

2

∞∑

n=1

(a2
n + b2n)

= c20 +
1

2

∞∑

n=1

c2n

=
∞∑

n=−∞
(A2

n + B2
n)

=
∞∑

n=−∞
X2

n
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Some consequences of Parseval’s

1. The mean square value of x(t) is finite (for

all cases of interest to us), so the infinite sums

on the previous slide are all finite, which must

mean that the Fourier coefficients all decay to

0 as |n| ↑ ∞ — in particular, |Xn| ↓ 0.

2. It is often useful or necessary to approxi-

mate x(t) by a finite number of terms from its

Fourier series, for instance by

xN(t) =
N∑

n=−N

Xn cos(nω0t + θn)

Note that the highest frequency in this approx-

imating signal is Nω0. The mean square error

in this case is

1

T

∫ T/2

−T/2

(
x(t)− xN(t)

)2
dt =

∑

|n|>N

X2
n
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Complex notation for compact expressions

Recall

x(t) =
∞∑

n=−∞
An cosnω0t−Bn sinnω0t

where An and Bn are specified by the integrals
in (6), (7). Defining

X̂n = An + jBn = Xnejθn

so

X̂n =
1

T

∫ T/2

−T/2
x(t)e−jnω0t dt (9)

allows us to rewrite the expression for x(t) as

x(t) =
∞∑

n=−∞
X̂nejnω0t (10)

(The reason the imaginary part of the sum
drops out is that An = A−n and Bn = −B−n.)

Equations (9) and (10) comprise the complex
form of the Fourier series representation for a
T -periodic signal.
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Non-periodic signals: From Fourier series
to Fourier transforms

We are often interested in non-periodic signals,
for instance an x(t) of finite duration, or one
that decays to 0 as |t| ↑ ∞. The signals of
interest to us typically satisfy∫ ∞

−∞
|x(t)| dt < ∞ or

∫ ∞
−∞

|x(t)|2 dt < ∞

We can consider such signals to have an infinite
period, and can obtain a Fourier representation
by taking the limit

T ↑ ∞ , nω0 = n
2π

T
→ ω ,

ω0 → dω , T X̂n → X̂(ω)

with summations suitably replaced by integrals.

The resulting X̂(ω) is termed the Fourier trans-
form of x(t).

...→
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The Fourier transform

The resulting expressions replace (10) and (9)
respectively by

x(t) =
1

2π

∫ ∞
−∞

X̂(ω)ejωt dω (11)

and

X̂(ω) =
∫ ∞
−∞

x(t)e−jωt dt (12)

The first of this pair of equations, (11), is
the Fourier synthesis equation, showing how
a general time function may be expressed as
a weighted combination of exponentials of all
frequencies ω; the Fourier transform X̂(ω) de-
termines the weighting.

The second of this pair of equations, (12), is
the Fourier analysis equation, showing how to
compute the Fourier transform from the signal.
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Some additional observations

Remember that X̂(ω) is in general a complex

number at each ω, even though x(t) is real —

reflecting the earlier definition X̂n = An + jBn.

We shall denote the real and imaginary parts

of X̂(ω) by A(ω) and B(ω) respectively, so

X̂(ω) = A(ω) + jB(ω)

We shall denote the magnitude and angle of

X̂(ω) by X(ω) and θX(ω) respectively, so

|X̂(ω)| = X(ω) 6 X̂(ω) = θX(ω)

Thus

X̂(ω) = X(ω)ejθX(ω)
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