
6.082 Fall 2006 Shortest Path Routing, Slide 1

Shortest Path
Routing

• Communications networks as graphs
• Graph terminology
• Breadth-first search in a graph
• Properties of breadth-first search

6.082 Fall 2006 Shortest Path Routing, Slide 2

Routing in an arbitrary network

Suppose we’d like to send a packet from node D to node F.
There are several possible routes for the packet to take –
which should we choose?

One common choice to find a shortest path, i.e., a path that
traverses the fewest number of communication links, since this
will minimize the use of routing resources.

To find a shortest path, we’ll turn to an elementary graph
algorithm: breadth-first search. Network algorithms are often
closely related to graph algorithms for obvious reasons!

6.082 Fall 2006 Shortest Path Routing, Slide 3

Networks As Graphs
A network composed of nodes and bidirectional communication
links

is easily converted into an undirected graph composed of
vertices and edges:

A B C D

E F G H

6.082 Fall 2006 Shortest Path Routing, Slide 4

Graph Terminology

A B C D

E F G H

A graph is composed of

• a set V of vertices
- |V| is the number of elements in V

• a set E of directed or undirected edges of the form (u,v)
where u, v ∈ V

- (u,v) is an edge connecting vertex u and vertex v
- Adj[u] contains all vertices v such that (u,v) ∈ E
- a graph is called sparse if |E| « |V|2

• total memory required to store graph = O(|V|+|E|) ≡ O(V+E)

V = { A B C D E F G H }
E = { (A,E) (A,B) (B,F) (C,D) (C,F) (C,G) (D,G) (D,H) (F,G) (G,H) }

6.082 Fall 2006 Shortest Path Routing, Slide 5

Breadth-first search
• Given a graph G = (V,E) and a distinguished source vertex s,

breadth-first search systematically explores the edges of G
to “discover” every vertex that is reachable from s.

• It produces a “breadth-first tree”
with root s that contains all
reachable vertices.

• Path from root to node v in tree will
be a shortest path from s to v.

• It’s called “breadth-first” because
the algorithm discovers all nodes of
distance K from s before discovering
any nodes of distance K+1.

See section 22.2 of “Introduction to Algorithms” by Cormen, Leiserson, Rivest, Stein

d=1

d=2

d=3

d=4

d=5

D

C G H

F

B

A

E

6.082 Fall 2006 Shortest Path Routing, Slide 6

Breadth-first Search Procedure
def BFS(G,s): # G is a graph with V and Adj
dist = {} # maps vertex to distance from s
parent = {} # maps vertex to parent in BFS tree
color = {} # maps vertex to color: white=undiscovered

gray=discovered, black=processed
for u in G.V: # loop through all nodes

color[u] = 'white' # node hasn’t been discovered yet
dist[u] = infinity # no distance from root yet
parent[u] = None # no parent in BFS tree yet

color[s] = 'gray' # root has been discovered
dist[s] = 0 # root is distance 0 from itself
parent[s] = None # root has no parent!
Q = Queue(0) # set up first-in, first-out queue
Q.put(s) # root is the first entry in the queue
while not Q.empty(): # loop until queue is empty

u = Q.get() # get next vertex from the queue
for v in G.Adj[u]: # loop through all its neighbors

if color[v]=='white': # if v hasn’t been discovered
color[v] = 'gray' # mark v as discovered
dist[v] = dist[u]+1 # v is one hop further than parent
parent[v] = u # parent is vertex from Queue
Q.put(v) # process v’s neighbors later

color[u] = 'black' # mark vertex from Queue as processed

6.082 Fall 2006 Shortest Path Routing, Slide 7

Example (root = B)
A B C D

E F G H

A B C D

E F G H

A B C D

E F G H

A B C D

E F G H

A B C D

E F G H

Q: B
0

Q: F A
1 1

Q: A C G
1 2 2

Q: C G E
2 2 2

Q: G E D
2 2 3

A B C D

E F G H

Q: E D H
2 3 3

A B C D

E F G H

Q: D H
3 3

A B C D

E F G H

Q: H
3

A B C D

E F G H

Q:

1

2

3

4

5

6

7

8

9

Node colors and Q shown at start
of each iteration of while loop

6.082 Fall 2006 Shortest Path Routing, Slide 8

Questions to ask about algorithms
• Does algorithm terminate on all inputs?
• Does it provably compute the desired result?

– In BFS, does dist[u] equal the shortest-path distance
from s to u?

– Does it discover all nodes reachable from s?
• How much space and time does the algorithm

require?
– Usually expressed in terms of asymptotic behavior, e.g.,

O(…) where … is related to the size of the input.
– In BFS: the size of the graph is given by |V| and |E|.

6.082 Fall 2006 Shortest Path Routing, Slide 9

BFS: time & space
• Initialization of dist, parent, color takes O(V) time

and they require O(V) space.
• Queue.put and Queue.get take constant time, i.e.,

time does not depend on size of queue. Maximum
queue size is O(V).

• Each vertex is enqueued and dequeued exactly
once, so time for all queue operations is O(V).

• The sum of the lengths of the Adj[] lists is O(E)
and each adjacency list is scanned once when node
is dequeued, so the total amount of time spent
scanning adjacency lists is O(E).

• Total processing time: O(V+E)
• Total processing space: O(V+E)

6.082 Fall 2006 Shortest Path Routing, Slide 10

The “B” in BFS
• The queue is used to organize the search to be breadth first

-- we process all the nodes at distance K before processing
their neighbors at distance K+1
– Queue ordering from example: B F A C G E D H

distance: 0 1 1 2 2 2 3 3

• A vertex’s color is used to distinguished nodes that have
been processed from nodes that haven’t – the search
processes each node exactly once. Note that all nodes on
the queue are colored gray: they’ve been discovered but
their adjacency lists have not been scanned. Nodes not on
the queue are either
– Black (the node and its neighbors have been discovered) or
– White (the node hasn’t yet been discovered)

6.082 Fall 2006 Shortest Path Routing, Slide 11

Back to networks…

• How does a node learn about it’s neighbors?
– Periodically send HELLO packets on outgoing links
– Remember source address of arriving HELLO packets
– What happens when link goes down?

• How does a node get Adj[] lists from other nodes?
– Periodically broadcast neighbor list to all nodes (LSA packets)
– Remember most recent LSA packet from each source
– What happens when link goes down?

• How does a node build its shortest path routing table?
– Run modified BFS using LSA info
– Only want outgoing link to use for first hop (don’t need distance

or complete route to destination).

6.082 Fall 2006 Shortest Path Routing, Slide 12

Slides for Friday

6.082 Fall 2006 Shortest Path Routing, Slide 13

Other shortest-path routing algorithms
• In the link-state routing algorithm of Lab 9

– Each node receives neighbor info from every node in the
network

– Each node knows about all the paths through the network
– Each node selects shortest path using BFS

• If all we want is the shortest path why learn
about all paths?
– To choose the right outgoing link, all a node needs to

know is which of its neighbors has the shortest path to
the destination

– Idea: Have neighbors only tell us enough info for us to
make the right routing decision

6.082 Fall 2006 Shortest Path Routing, Slide 14

Path Vector Routing Protocol

• Initialization
– Each node knows the path to itself

A D

C

B

E1 1 2 1

1

1

2

23

3

D

DST
End layer

Link

For example, D initializes its paths

null

Path

Slides are from lectures by Nick Mckeown, Ion Stoica, Frans Kaashoek,
Hari Balakrishnan, Sam Madden, and Dina Katabi

6.082 Fall 2006 Shortest Path Routing, Slide 15

Path Vector
• Step 1: Advertisement

– Each node tells its neighbors its path to each node in the
graph

A D

C

B

E1 1 2 1

1

1

2

23

3

For example, D receives:

A

To
null

Path
From A:

C

To
null

Path
From C:

E

To
null

Path
From E:

6.082 Fall 2006 Shortest Path Routing, Slide 16

Path Vector
• Step 2: Update Route Info

– Each node use the advertisements to update its paths

D received:

A

To
null

Path
From A:

C

To
null

Path
From C:

E

To
null

Path
From E:

D updates its paths:

D

DST
End layer

Link
null

Path
D

DST
End layer

Link
null

Path

A 1 <A>
C 3 <C>
E 2 <E>

Note: At the end of first round, each node has learned all
one-hop paths

6.082 Fall 2006 Shortest Path Routing, Slide 17

Path Vector
• Periodically repeat Steps 1 & 2

In round 2, D receives:

A

To
null

Path
From A:

C

To
null

Path
From C:

E

To
null

Path
From E:

D updates its paths:

D

DST
End layer

Link
null

Path

A 1 <A>
C 3 <C>
E 2 <E>

D <D> D <D>
E <E>
B

D <D>
C <C>

D

DST
End layer

Link
null

Path

A 1 <A>
C 3 <C>
E 2 <E>
B 3 <C, B>

Note: At the end of round 2, each node has learned all two-hop paths

6.082 Fall 2006 Shortest Path Routing, Slide 18

Questions About Path Vector
• How do we ensure no loops?

– When a node updates its paths, it never accepts a path
that has itself

• What happens when a node hears multiple paths to
the same destination?
– It picks the better path (e.g., the shorter number of

hops)
• What happens if the graph changes?

– Algorithm deals well with new links
– To deal with links that go down, each router should

discard any path that a neighbor stops advertising

6.082 Fall 2006 Shortest Path Routing, Slide 19

Hierarchical Routing

• Internet: collection of domains/networks
• Inside a domain: Route over a graph of routers
• Between domains: Route over a graph of domains
• Address: concatenation of “Domain Id”, “Node Id”

domain-1

domain-2

domain-3

Interior router

Border router

6.082 Fall 2006 Shortest Path Routing, Slide 20

Hierarchical Routing
Advantage
• scalable

– Smaller tables
– Smaller messages

• Delegation
– Each domain can run its own

routing protocol

Disadvantage
• Mobility is difficult

– Address depends on geographic location
• Sup-optimal paths

– E.g., in the figure, the shortest path between the two machines
should traverse the yellow domain. But hierarchical routing goes
directly between the green and blue domains, then finds the local
destination path traverses more routers.

6.082 Fall 2006 Shortest Path Routing, Slide 21

Proof of BFS correctness

6.082 Fall 2006 Shortest Path Routing, Slide 22

Shortest paths
• Define shortest-path distance δ(s,v) from s to v

as the minimum number of edges in any path from
vertex s to vertex v. If there is no path from s
to v, δ(s,v) = ∞.

• A path of length δ(s,v) from s to v is said to be a
shortest path.

• Claim: BFS computes shortest-path distances, i.e.,
after running BFS(G,s), dist[v] = δ(s,v).

We’ll need to prove a couple of properties about
shortest paths before we can prove the claim
above…

6.082 Fall 2006 Shortest Path Routing, Slide 23

Proof techniques
• Proof by contradiction

– Usually trying to prove “X is true for all Y”.
– Hypothesize that’s not true: “There exists a Y for which

is X is not true”
– Reason forward from the hypothesis, arriving at a

contradiction
– Conclude that the hypothesis is false and hence the

original statement must be true.
• Proof by induction on a sequence of steps

– Create an induction hypothesis related to the statement
you’re trying to prove – it should be an “invariant” that
will be maintained by each step of the process

– (Basis) Show hypothesis is true after the first step
– (Induction step) Assume hypothesis is true after step N,

show it’s true after step N+1
– Conclude hypothesis is true for all N

6.082 Fall 2006 Shortest Path Routing, Slide 24

Lemma 1
Lemma 1: Let G = (V,E) be a directed or undirected graph, and
let s ∈ V be an arbitrary vertex. Then for any edge (u,v) ∈ E,

δ(s,v) ≤ δ(s,u) + 1

Proof

if u is not reachable from s, δ(s,u) = ∞, and the inequality holds.

If u is reachable from s, then so is v. The shortest path from s
to v cannot be longer than the shortest path from s to u
followed by the edge (u,v), and thus the inequality holds.

6.082 Fall 2006 Shortest Path Routing, Slide 25

Lemma 2
Lemma 2: Let G = (V,E) be a directed or undirected graph, and
let s ∈ V be an arbitrary vertex. Then after running BFS(G,s),
for each v ∈ V

dist[v] ≥ δ(s,v)

Proof: If v is not reachable from s, then during initialization dist[v] = ∞
= δ(s,v). Otherwise, we proceed by induction on the number of Q.put
operations. Our inductive hypothesis is that dist[v] ≥ δ(s,v) for each v
∈ V.

Basis: Just after Q.put(s), dist[s] = 0 = δ(s,s), and dist[v≠s]=∞.

Induction step: consider a white vertex v discovered during search from
vertex u (i.e., there’s an edge (u,v) ∈ E). Since u was just fetched
from Q, the inductive hypothesis implies dist[u] ≥ δ(s,u). Thus just
after Q.put(v)

dist[v] = dist[u] + 1 - by assignment in BFS
≥ δ(s,u) + 1 - by inductive hypothesis
≥ δ(s,v) - by Lemma 1

6.082 Fall 2006 Shortest Path Routing, Slide 26

Lemma 3
Lemma 3: Suppose that during the execution of BFS on a graph
G = (V,E), the queue Q contains the vertices <v1, v2, …, vr>
where v1 is the head of Q and vr is the tail. Then

dist[vr] ≤ dist[v1] + 1, and
d[vi] ≤ d[vi+1] for i = 1, 2, …, r-1

In words: there are at most two distinct distances for nodes in
the queue at any given time and that nearer nodes have been
enqueued before nodes that are further away.

Proof: by induction on the number of queue operations.

Basis: initially the queue contains only s and the lemma is trivially
true.

Induction step: prove lemma after both dequeuing and enqueuing
a vertex.

6.082 Fall 2006 Shortest Path Routing, Slide 27

Proof of Lemma 3 (cont’d.)
After dequeuing: After the head v1 has been dequeued, v2
becomes the new head. By inductive hypothesis dist[v1] ≤ dist[v2]
and dist[vr] ≤ dist[v1]+1. Putting the two facts together, dist[vr]
≤ dist[v2] + 1 and the remaining inequalities are unaffected.
Thus the lemma holds with v2 as the head.

After enqueuing: We perform enqueuing operations while
searching the adjacency list of a node u that was just dequeued.
By the inductive hypothesis, we know the relationships between
dist[u] and the current contents of the queue: dist[u] ≤ dist[v1]
and dist[vr] ≤ dist[u]+1.

When we enqueue a white neighbor of u it becomes vr+1. BFS sets
dist[vr+1] = dist[u]+1, and so dist[vr+1] ≤ dist[v1]+1 and dist[vr] ≤
dist[vr+1]. The remaining inequalities are unaffected and the thus
the lemma holds with vr+1 as the tail.

Corollary 4: If vi is enqueued before vj, then dist[vi] ≤ dist[vj]

6.082 Fall 2006 Shortest Path Routing, Slide 28

Theorem: Correctness of BFS
Theorem 5: Let G = (V,E) be a directed or undirected graph, and
let s ∈ V be an arbitrary vertex. Then after running BFS(G,s)
• BFS discovers every vertex v ∈ V that is reachable from s
• Upon termination dist[v] = δ(s,v)
• For every reachable v ≠ s, one of the shortest paths from s
to v is a shortest path from s to parent[v] followed by the
edge (parent[v],v).

Proof: Assume, for the purpose of contradiction, that there is
some vertex v with the minimum δ(s,v) that is assigned a
distance that is not equal to δ(s,v). By Lemma 2, dist[v] >
δ(s,v). Vertex v must be reachable from s, for if it is not,
δ(s,v) = ∞ ≥ dist[v]. Let u be the vertex immediately before v
on a shortest path from s to v, so that δ(s,v) = δ(s,u) + 1.
Because δ(s,u) < δ(s,v), and because of how we chose v, we have
dist[u] = δ(s,u). Putting this together:

dist[v] > δ(s,v) = δ(s,u) + 1 = dist[u]+1 [5.1]

6.082 Fall 2006 Shortest Path Routing, Slide 29

Proof of Theorem 5 (cont’d.)
Now consider the time when u is dequeued during BFS. At that
time v is either white, gray or black.

v is white: then BFS will set dist[v] = dist[u]+1, contradicting
[5.1]

v is black: then v has already been removed from the queue and,
by Corollary 4, dist[v] ≤ dist[u], contradicting [5.1]

v is gray: then it was painted gray upon dequeuing some other
node w which dequeued before u. BFS has set dist[v] =
dist[w]+1. But by Corollary 4, dist[w] ≤ dist[u], so we have
dist[v] ≤ dist[u]+1, again contradicting [5.1].

Thus we conclude that dist[v] = δ(s,v). We must have processed
all discoverable nodes, otherwise they’d have infinite dist values.
Finally if parent[v] = u, then dist[v] = dist[u]+1. So a shortest
path to v is obtained by a shortest path to u followed by the
edge (parent[v],v).

