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LECTURE 5
Noise and ISI

If there is intersymbol interference (ISI) in a communication channel, then the signal de-
tected at the receiver depends not just on the particular bit being sent by transmitter, but
on that bit and its neighbors in time. As you will see below, if there is ISI and noise, then
determining the probability of a bit error is more complicated than the ISI-free case. We
will examine the ISI plus noise case by returning to the example of additive white Gaus-
sian noise, and make use of the Unit Normal Cumulative Distribution Function, denoted
Φ, as well as Conditional Probabilities. Following the analysis of bit error in the face of
ISI, we will return to the subject of eliminating ISI using deconvolution. But this time, we
will take the view that we are willing to accept imperfect deconvolution in the noise-free
case, if the resulting strategy produces reasonable results in the noisy case.

� 5.1 The Unit Normal Cumulative Distribution Function

The reason we emphasize the Gaussian (or Normal) cumulative distribution function
(CDF) is that a wide variety of noise processes are well-described by the Gaussian dis-
tribution. Why is this the case? The answer follows from the central limit theorem that was
mentioned, but not described, in the previous lecture. A rough statement of the central
limit theorem is that the CDF for the sum of a large number of independent random vari-
ables is nearly Gaussian, almost regardless of the CDF’s of the individual variables. The
almost allows us to avoid delving in to some technicalities.

Since noise in communication systems is often the result of the combined effects of
many sources of interference, it is not surprising that the central limit theorem should
apply. So, noise in communication systems is often, but not always, well-described by a
the Gaussian CDF. We will return to this issue in subsequent lectures, but for now we will
assume that noise is Gaussian.

The unit Normal probability density function (PDF) is just the Gaussian PDF for the
zero-mean (µ = 0), unit standard-deviation (σ = 1) case. Simplifying the formula from
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Lecture 4, the unit Normal PDF is

fX(x) =
e−

x2
2

√
2π

, (5.1)

and the associated unit Normal cumulative distribution function is

Φ(x) =
Z x

−∞
fX(x′) dx′ =

Z x

−∞

e−
x′2
2

√
2π

dx′. (5.2)

There is no closed-form formula for the unit Normal CDF, Φ, but most computer math
libraries include a function for its evaluation. This might seem foolish given one is un-
likely to be lucky enough to have a noise process with a standard deviation of exactly one.
However, there is a simple way to use the unit Normal CDF for any Gaussian random vari-
able. For example, suppose we have a Gaussian zero-mean noise process, noise[n], with
standard deviation σ. The probability that noise[n] < x is given by

P(noise[n] < x) =
Z x

−∞

e−
x′2
2σ2

√
2πσ2

dx′ = Φ

( x
σ

)
. (5.3)

That is, we can evaluate the CDF for a zero-mean, σ standard-deviation process just by
scaling the argument before evaluating Φ. Note, this does not imply that one can just scale
the argument when evaluating the PDF!

As with any CDF, limx→−∞Φ(x) = 0 and limx→∞Φ(x) = 1. In addition, the symmetry
of the zero-mean Gaussian PDF, fX(x) = fX(−x), implies Φ(0) = 0.5 (half the density in
the PDF corresponds to negative values for the random variable). Another identity that
follows from the symmetry of the Gaussian PDF, and one we will use subsequently, is

Φ(x) = 1−Φ(−x). (5.4)

� 5.2 ISI and BER

Recall from last lecture that if our noise model is additive white Gaussian noise, and if we
assume the receiver and transmitter have exactly the same bit period and never drift apart,
then

y[i + ks] = yn f [i + ks] + noise[i + ks] (5.5)

where i + ks is the index of the bit detection sample for the kth transmitted bit, y[i + ks] is
the value of the received voltage at that sample, and yn f [i + ks] is what the received voltage
would have been in the absence of noise.

If there are no ISI effects, then yn f [i + ks] is equal to either the receiver maximum volt-
age or the receiver minimum voltage, depending on whether a ’1’ bit or a ’0’ bit is being
received, as shown in the eye diagram in Figure 5-1. For the eye diagram in Figure 5-2,
there are three bits of intersymbol interference. And as can be seen in the figure, yn f [i + ks]
can take on any of sixteen possible values. The eight upper values are associated with
receiving a ’1’ bit, and the eight lower values are associated with receiving a ’0’ bit.

In order to determine the probability of a bit error in the case shown in Figure 5-2,
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Figure 5-1: A noise-free eye diagrams, showing a bit detection sample with no ISI effects

we must determine the probability of a bit error for each of sixteen cases associated with
the sixteen possible values for yn f [i + ks]. For example, suppose v j

L is one of the possible
voltage values for the bit detection sample associated with receiving a ’0’ bit. Then for a
digitization threshold voltage vth, the probability of a bit error, given y[i + ks] = v j

L ,

P(y[i + ks] > vth|yn f [i + ks] = v j
L) = P(noise[i + ks] > (vth − v j

L)|yn f [i + ks] = v j
L) (5.6)

where we have used the notation P(a|b) to indicate the probability that a is true, given it is
known that b is true.

Similarly, suppose v j
H is one of the possible voltage values for a bit detection sample

associated with receiving a ’1’ bit. Then the probability of a bit error, given y[i + ks] = v j
H ,

is
P(noise[i + ks] < (vth − v j

H)|yn f [i + ks] = v j
H). (5.7)

Comparing (5.7)to (5.6), there is a flip in the direction of the inequality. Note also that
(vth − v j

H) must be negative, or bit errors would occur even in the noise-free case.
Equation (5.6) means that if the transmitter was sending a ’0’ bit, and if the sequence of

transmitted bits surrounding that ’0’ bit would have produced voltage v j
L at the receiver

(in the absence of noise), then there will be a bit error if the noise is more positive than the
distance between the threshold voltage and v j

L. Similarly, (5.7) means that if the transmitter
was sending a ’1’ bit, and if the sequence of transmitted bits surrounding that ’1’ bit would
have produced voltage v j

H at the receiver (in the absence of noise), then there will be a bit
error if the noise is negative enough to offset how far v j

H is above the threshold voltage.
If the noise samples are Gaussian random variables with zero mean (µ = 0) and stan-

dard deviation σ, the probabilities in (5.6) and (5.7) can be expressed using the unit normal
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Figure 5-2: A noise-free eye diagram showing a bit detection sample with three bits of ISI

CDF. Specifically,

P(noise[i + ks] > (vth − v j
L)|yn f [i + ks] = v j

L) = 1−Φ

(
vth − v j

L
σ

)
= Φ

(
v j

L − vth

σ

)
(5.8)

and

P(noise[i + ks] < (vth − v j
H)|yn f [i + ks] = v j

H) = Φ

(
vth − v j

H
σ

)
(5.9)

where the right-most equality in (5.8) follows from (5.4).
If all bit sequences are equally likely, then each of the possible voltage values for the bit

detection sample is equally likely1. Therefore, the probability of a bit error is just the sum
of the conditional probabilities associated with each of the possible voltage values for a
bit detection sample, divided by the number of possible values. More specifically, if there
are JL voltage values for the bit detection sample associated with a transmitted ’0’ bit and
JH voltage values associated with a transmitted ’1’ bit, and all voltage values are equally
likely, then the probability of a bit error is given by

P(bit error) =
1

JH + JL

(
j=JL

∑
j=1

Φ

(
v j

L − vth

σ

)
+

j=JH

∑
j=1

Φ

(
vth − v j

H
σ

))
. (5.10)

A number of popular bit encoding schemes, including the 8b/10b encoding scheme
described in the first lab, reduce the probability of certain transmitter bit patterns. In cases

1the degenerate case, where multiple bit pattern result in identical voltage values for the bit detection
sample, can be treated without altering the following analysis, as is shown in the worked example companion
to this text
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like these, it may be preferable to track transmitter bit sequences rather than voltage values
of the bit detection sample. A general notation for tracking the error probabilities as a
function of transmitter bit sequence is quite unwieldy, so we will consider a simple case.
Suppose the ISI is such that only the previous bit interferes with the current bit. In this
limited ISI case, the received bit detection sample can take on one of only four possible
values. Let v1

L denote the value associated with transmitting two ’0’ bits in a row (bit
sequence 00), v2

L, the value associated with transmitting a ’1’ bit just before a ’0’ bit (bit
sequence 10), v1

H, the value associated with transmitting a ’0’ bit just before a ’1’ bit (bit
sequence 01), and v2

H, the value associated with transmitting two ’1’ bits in a row (bit
sequence 00).

See, even in this simple case, the notation is already getting awkward. We use P(00)1 to
denote the probability that the receiver erroneously detected a ’1’ bit given a transmitted
bit sequence of 00, P(01)0 to denote the probability that the receiver erroneously detected a
’0’ bit given a transmitted bit sequence of 01, and so forth. From (5.6) and (5.7),

P(00)1 = P(noise[i + ks] > (vth − v1
L)|yn f [i + ks] = v1

L), (5.11)

P(10)1 = P(noise[i + ks] > (vth − v2
L)|yn f [i + ks] = v2

L), (5.12)

P(01)0 = P(noise[i + ks] < (vth − v1
H)|yn f [i + ks] = v1

H), (5.13)

P(11)0 = P(noise[i + ks] < (vth − v2
H)|yn f [i + ks] = v2

H). (5.14)

If we denote the probability of transmitting the bit sequence 00 as P00, the probability
of transmitting the bit sequence 01 as P01, and so forth, then the probability of a bit error is
given by

P(bit error) = P(00)1P00 + P(10)1P10 + P(01)0P10 + P(11)0P11. (5.15)

Whew! Too much notation.

� 5.3 Deconvolution and noise

Many problems in inference and estimation have deconvolution as the noise-free optimal
solution, and finding methods for succeeding with deconvolution in the presence of noise
arises in a variety applications including: communication systems, medical imaging, light
microscopy and telescopy, and audio and image restoration. The subject is enormous, and
we will touch on a very small part of it, focussing on a few techniques that will help us
improve the performance of the IR channel.

When we use deconvolution, we are trying to eliminate the effects of an LTI channel
that lead to intersymbol interference. More generally though, deconvolution is just one
of many strategies for estimating the transmitted samples from noisy received samples.
With additive noise and deconvolution, the diagram for transmission though our channel
is now

X → CHANNEL → Yn f → Add NOISE → Y → DECONVOLVER → W ≈ X (5.16)

where X is the sequence of transmitted samples, Yn f is the sequence of noise-free samples
produced by the channel, Y is the sequence of receiver-accessible noisy samples, and the
sequence W is the estimate of X generated by the deconvolver.
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If the LTI channel has a unit sample response, H, and that H is used to deconvolve the
noisy received samples, W satisfies the deconvolving difference equation

m=n

∑
m=0

h[m]w[n−m] = yn f [n] + noise[n], (5.17)

where the right-hand side of (5.17), in this case yn f [n] + noise[n], is referred to as the input
to the deconvolving difference equation. Also, as the channel is LTI, X is related to Yn f
through convolution with the channel’s unit sample response,

yn f [n] =
m=n

∑
m=0

h[m]x[n−m]. (5.18)

If there is no noise, W = X, and we have perfect deconvolution, though we already
know that for some H’s deconvolution can be very sensitive to noise. Since we cannot
completely eliminate noise, and we cannot change H, our plan will be to approximate H
by H̃ when deconvolving, and then try to design H̃ so that this approximate deconvolution
will be less sensitive to noise, yet still provide good estimates of the input sequence X. As
we analyze approximate deconvolution in more detail, we will discover that the design of
H̃ involves a trade-off. The trade off is between reducing noise sensitivity, which we will
relate to the stability properties of the deconvolving difference equation, and how close H̃
is to H, which we will relate to the accuracy of the approximate deconvolver in the absence
of noise.

� 5.3.1 Convolution Abstraction

Manipulating convolution sums can be cumbersome, but more importantly, the complex-
ity of the details can obscure larger issues. In mathematics, engineering, science, or for that
matter life in general, the key to managing complexity is to find the right abstraction.

In our case, a useful abstraction is to represent convolution using the notation

H ∗ X ≡
m=n

∑
m=0

h[m]x[n−m], (5.19)

where H is a unit sample response and X is an input sequence.
That convolution is an LTI operation leads to two identities that can be stated quite

compactly using our abstract notation. First, given two sequences, X and W, and a unit
sample response, H,

H ∗W− H ∗ X ≡
m=n

∑
m=0

h[m]w[n−m]−
m=n

∑
m=0

h[m]x[n−m] (5.20)

=
m=n

∑
m=0

h[m](w[n−m]− x[n−m]) = H ∗ (W− X).
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For the second identity, consider a second unit sample response, H̃,

H ∗ X− H̃ ∗ X ≡
m=n

∑
m=0

h[m]x[n−m]−
m=n

∑
m=0

h̃[m]x[n−m] (5.21)

=
m=n

∑
m=0

(h[m]− h̃[m])x[n−m] = (H− H̃) ∗ X.

The first identity in (5.21) follows directly from the linearity of convolution, and second
identity can be derived from the first using the commutative property of convolution (H ∗
X = X ∗ H).

� 5.3.2 Deconvolution Noise Sensitivity

Armed with the notational abstraction and the two identities above, we can get a much
clearer picture of exact deconvolution and approximate deconvolution in the presence of
additive noise. To begin, note that noise-free exact deconvolution is, in our more abstract
notation,

Yn f = H ∗ X (5.22)

H ∗W = Yn f ,

Note that in this noise free case, W = X.
Including a sequence of additive noise, NOISE, before deconvolving yeilds

Yn f = H ∗ X (5.23)

Y = Yn f + NOISE

H ∗W = Y,

where Y is the sequence of received noisy samples. Note that in this noisy case, W ≈ X, but
only if deconvolution with H is insensitive to noise. As we have noted before, deconvolution
with typical H’s can be extremely sensitive to noise, though now we will be more precise
about what we mean by noise sensititivy.

Collapsing the three equations in (5.23),

H ∗W = NOISE + H ∗ X, (5.24)

or
H ∗W− H ∗ X = NOISE, (5.25)

or, by using one of the identities from the previous section,

H ∗ (W− X) = H ∗ E = NOISE, (5.26)

where E ≡ W − X is the sequence of estimation errors, and E indicates how different our
deconvolved W is from the transmitted X.

We can now state what we mean by noise sensitivity.

Deconvolving with H is sensitive to noise if E can be very large even when NOISE is small.



8 LECTURE 5. NOISE AND ISI

To understand what unit sample responses(USRs) lead to noise-sensitive deconvolvers,
consider the case of a finite length USR, h[n] = 0, n > K. Then from (5.26), E satisfies the
difference equation

h[0]e[n] + h[1]e[n− 1] + .... + h[K]e[n− K] = noise[n]. (5.27)

Now suppose the input to the difference equation, noise[n], is zero for n > N. If the dif-
ference equation in (5.27) is unstable, then the limn→∞ |e[n]| will typically approach ∞.
Clearly, if (5.27) is unstable, then for large values of n, w[n] will be a terrible estimate of
x[n].

It is possible to determine precisely the stability of the difference equation in (5.27)
by examining the roots of a K + 1th-order polynomial whose coefficients are given by
h[0], h[1], ..., h[K] (For details, see, for example, the 6.01 notes). Unfortunately, the root
condition offers little intuition about what kinds of H’s will result in deconvolvers that are
very sensitive to noise.

In order to develop some intuition, consider reorganizing (5.27) in a form to apply plug
and chug,

e[n] = −
m=K

∑
m=1

h[m]
h[0]

e[n−m] +
1

h[0]
noise[n]. (5.28)

When the deconvolving difference equation is viewed in this plug-and-chug form, one can
easily see that small values of h[0] will be a problem. Not only is the input noise sample
magnified by 1

h[0] , but if in addition | h[m]
h[0] | > 1 for any m > 0, then errors from previous

steps are likely to accumulate and cause e[n] to grow rapidly with n.
One can be somewhat more precise by introducing a sufficient, but not necessary, con-

dition for stability. If
m=K

∑
m=1

|h[m]
h[0]

| = Γ < 1 (5.29)

then (5.27) is a stable difference equation. The justification for this perhaps unsurprising
result is mercifully brief, and can be found in the appendix.

It is important to note that (5.29) is a sufficient condition for stability of the deconvolving
difference equation, and quite a conservative condition at that. It is easy to generate very
stable difference equations that violate (5.29). What we should retain is the insight that
making h[0] larger is likely to improve stability.

� 5.3.3 Analyzing Approximate Deconvolution

In order to reduce noise sensitivity, so that W ≈ X even if Y is noisy, we will consider
performing the deconvolution using a different unit sample response, H̃. In this case,

Yn f = H ∗ X (5.30)

Y = Yn f + NOISE

H̃ ∗W = Y,

where we will try to design H̃ so that W ≈ X even when Y is noisy.
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Collapsing the three equations in (5.31),

H̃ ∗W = NOISE + H ∗ X, (5.31)

and therefore
H̃ ∗W− H ∗ X = NOISE. (5.32)

Deriving an equation for the error, E ≡ W − X, in this approximate deconvolver case
requires a small trick. If we add H̃ ∗ X− H̃ ∗ X = 0 to (5.32),

H̃ ∗W + (H̃ ∗ X− H̃ ∗ X)− H ∗ X = H̃ ∗ (W− X)− (H̃− H) ∗ X = NOISE, (5.33)

and we can now rewrite (5.32) in terms of the error,

H̃ ∗ E = NOISE + (H̃− H) ∗ X, (5.34)

or in sum form

m=n

∑
m=0

h̃[m]e[n−m] = noise[n] +
m=n

∑
m=0

(h̃[m]− h[m])x[n−m] (5.35)

where the right-hand side of (5.34) or (5.35) is the input to the approximate deconvolver
difference equation for the error.

If we compare (5.34) to (5.26), we note two differences. First, the deconvolving differ-
ence equations, the left-hand sides, are different. To make the approximate deconvolver
less sensitive to noise, we should pick H̃ so that the approximate deconvolving difference
equation is as stable as possible.

The second difference between (5.34) to (5.26) is that the input in (5.34) has an extra
term,

(H̃− H) ∗ X. (5.36)

If there is no noise, the input to (5.26) will be zero, and therefore E will be zero (perfect
deconvolution). But even if there is no noise, there will be a nonzero input in (5.34) equal
to (5.36). If (5.36) is small, the input to the approximate deconvolving difference equation
in (5.34) will be small. If we assume that H̃ was properly designed, and its associated
deconvolving difference equation that is quite stable, then if (5.36) is small, the associated
E will be small.

So, we have two competing concerns. We want to pick H̃ so that the deconvolving dif-
ference equation based on H̃ will be as stable as possible, yet we also want to ensure that
(H̃ − H) ∗ X is as small as possible so the deconvolver will be accurate. Or said another
way, if H leads to deconvolution that is sensitive to noise, then the H-generated decon-
volving difference equation must be unstable or nearly unstable. if H̃ is too close to H,
then the deconvolving difference equation generated from H̃ will have the same bad sta-
bility properties. But, if H̃ is too far from H, then the approximate deconvolver will be
inaccurate.
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� 5.3.4 Summarizing

After all the above analysis, we know we want a stable yet accurate deconvolver, but we
still do not have an explicit formula, or even a general receipe, for finding a good H̃. What
we do have is some guidance about what to try.

First, we have good evidence that the bigger we make the value of |h̃[0]| compared to
|h̃[m]|, m > 0, the more stable we make the approximate deconvolving difference equation,
thereby enhancing noise immunity.

Second, we know that to improve accuracy, we must make (H̃ − H) ∗ X as small as
possible. Since X is the sequence of transmitter samples, and is representing bits, the unit
step might be a reasonable typical X to consider (certainly important if the transmitter is
sending many ’1’ bits in a row). If X is the unit step, then (H̃− H) ∗ X = H̃ ∗ X− H ∗ X =
S̃− S where S and S̃ are the step responses associated with the unit sample responses H
and H̃, respectively. This suggests that a good H̃ should have an associated step response
that matches the channel step response as well as possible. That is, try to make

(s̃[n]− s[n]) = (
n

∑
0

h̃[n]−
n

∑
0

h[n]) (5.37)

as close to zero as possible for as many values of n as possible, while still ensuring stability.
Our analysis suggested some heuristics for generating an effective deconvolving H̃,

though we gained no insight in to how close we came to finding the best H̃. So, one might
ask, is there a way to determine the optimal H̃? To answer that question, one first needs
a precise definition of optimal. For example, in this setting, an optimal deconvolving H̃
might be defined as the one that results in the lowest BER. And then, after one has decided
on a definition of optimality, one needs to determine if the reaulting optimization problem
is tractable. To address these issues requires quite a few more mathematical tools, a few of
which we will see in later lectures, but most will require study beyond 6.02. But, what we
hope you will see in lab, is that there is a lot you can do with the tools you have now.

� 5.4 Appendix

� 5.4.1 Justification of the Sufficient Condition for Stability.

Given a deconvolving difference equation,

h[0]e[n] + h[1]e[n− 1] + .... + h[K]e[n− K] = noise[n], (5.38)

if the difference equation coefficients satisfy

m=K

∑
m=1

|h[m]
h[0]

| = Γ < 1, (5.39)

then (5.38) is a stable difference equation.
We will show that (5.39) implies that

lim
n→∞

e[n]→ 0 (5.40)
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if noise[n] = 0 for all n greater than some finite N. In this difference equation setting,
stability is equivalent to saying that the deconvolver error would eventually decay to zero
if the noise suddenly became zero.

To show that e[n]→ 0, we first reorganize (5.38) in to plug-and-chug form for the n > N
case,

e[n] = −
m=K

∑
m=1

h[m]
h[0]

e[n−m]. (5.41)

Taking absolute values yields the inequality

|e[n]| ≤
m=K

∑
m=1

|h[m]
h[0]

||e[n−m]|. (5.42)

To simplify the steps of the proof, we define a sequence whose nth value is the maximum
absolute value of the error over the last K samples,

ϒ[n] ≡ max
n−K<m≤n

|e[m]|. (5.43)

From (5.42) and the fact that, by definition, |e[n−m]| ≤ ϒ[n− 1] for 1 ≤ m ≤ K,

|e[n]| ≤
(

m=K

∑
m=1

∣∣∣∣h[m]
h[0]

∣∣∣∣
)

ϒ[n− 1]. (5.44)

Equation (5.44) can be simplified using (5.39),

|e[n]| ≤ Γ ϒ[n− 1], (5.45)

which implies that ϒ[n] ≤ ϒ[n− 1] as Γ < 1. Then by iterating the above result,

|e[n + 1]| ≤ Γ ϒ[n] ≤ Γ ϒ[n− 1] (5.46)

|e[n + 2]| ≤ Γ ϒ[n + 1] ≤ Γ ϒ[n− 1]
...

|e[n + K− 1]| ≤ Γ ϒ[n + K− 2] ≤ Γ ϒ[n− 1],

which together with (5.45) implies

ϒ[n + K− 1] ≤ Γ ϒ[n− 1]. (5.47)

since, by definition, ϒ[n + K− 1] ≡maxn−1<m≤n+K−1 |e[m]|. From (5.47) it follows that

ϒ[n + lK− 1] ≤ Γ
l
ϒ[n− 1]. (5.48)

Since Γ < 1, liml→∞Γl = 0 and therefore liml→∞ϒ[n + lK− 1] → 0, from which it follows
that limn→∞ e[n]→ 0.




