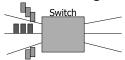

Network Routing I (The Simple Case Without Failures)

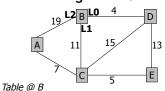
Lecture 20 6.02 Spring 2009 April 22, 2009

- · Forwarding and routing
- Distance-vector protocol with Bellman-Ford step
- Link-state protocol with Dijkstra's shortest-paths


MASSACHUSET DISTITUTE OF TECHNOLOGY

The Problem: Finding Paths

- How to find a good path (or paths) between any two nodes?
- · Addressing (naming nodes)
- Forwarding (what a switch does when packet arrives)
- Routing (building and updating data structures to ensure that forwarding works)

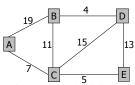

Forwarding

- Core function is conceptually simple
 - lookup(dst_addr) in routing table returns route (i.e., outgoing link) for packet
 - enqueue(packet, link_queue)
 - send(packet) along outgoing link
- And do some book-keeping before enqueue
 - Decrement hop limit (TTL); if 0, discard packet
 - Recalculate checksum (in IP, header checksum)

I'lliT MASSACHU

Routing Table Structure

Destination	Link (next-hop)	Cost
	JTE L1	18
В	'Self'	0
С	L1	11
D	L0	4
Е	L1	16

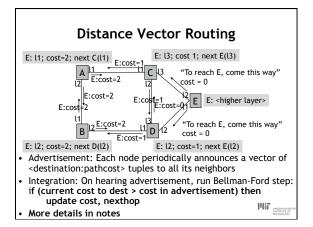

MASSACH DISTRICT

Why is Network Routing Hard?

- Inherently distributed problem
 - Information about links and neighbors is local to each node, but we want global reach
- Efficiency: want reasonably good paths, and must find them without huge overhead
- Handling failures and "churn" (next lecture)
 - Must tolerate link, switch, and network faults
 - Failures and recovery could be arbitrarily timed, messages could be lost, etc.
- Scaling to large size very hard (later courses)
 - And on the Internet, many independent, competing organizations must cooperate
 - Mobility makes the problem harder

MASSACHUSE DISTITUTE OF TECHNOLOGY

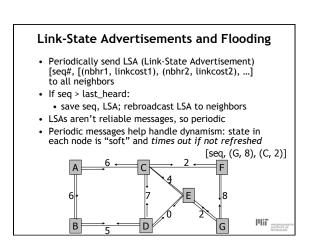
Shortest Path Routing


- Each node wants to find the path with minimum total cost to other nodes
 - We use the term "shortest path" even though we're interested in min cost (and not min #hops)
- Several possible approaches
 - Vector protocols
 - Link-state protocols

MASSACHUSE ENSTITUTE OF TRICKINGLOGY

Distributed Routing: A Common Plan

- · Determining live neighbors
 - HELLO protocol (periodic)
- Advertisement step (periodic)
 - Send some information to all neighbors
- Integration step
 - Compute routing table using info from advertisements


Link-State Routing

- · HELLO protocol for neighbor liveness
- Advertisement step:
 - · Information about its links to its neighbors
 - Neighbors re-send on their links → flooding
 - Result: Each node discovers map of the network
- Integration: Each node runs the same shortest path algorithm over its map
 - If each node implements computation correctly and each node has the same map, then routing tables will be correct

MASSACHUSE DISTRITUTE OF TECHNOLOGY

Integration Step: Dijkstra's alg • Many algorithms: We'll study Dijkstra's E C A D B 0 5 12 13 16 ACEBD0 7 12 18 22 BDCEA 0 4 11 16 18 CEABD0 5 7 11 15 DBECA Key property of shortest paths: 0 4 13 15 22 Suppose shortest path from X to Y goes through Z. Then, the sub-path from X to Z must be a shortest path. [Why?] MASSACHE DISTITUTE PROMISED

