
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2002

Handout 41 - Quiz 3
This quiz has 13 multiple-choice questions. In order to receive credit you must mark the correct
answer or answers for each question. You have 60 minutes to complete this quiz.

Write your name on this cover sheet AND at the bottom of each page of the quiz.

Some questions may be much harder than others. Read them all through first and attack them
in the order that allows you to make the most progress. If you find a question ambiguous, be
sure to write down any assumptions you make. Please be neat. Circle your choices clearly and
unambiguously! If we can’t understand your answer, we can’t give you credit!

There’s a copy of the pseudocode for Section II on the last page (page 11). You may tear that
page out for easy reference. You don’t need to turn that page in with your exam.

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

CIRCLE your recitation section:

10:00 1. Balakrishnan/Chambers 13. Morris+Kaashoek/Gnawali 11. Amarasinghe/Bhattacharyya

11:00 2. Balakrishnan/Salz 6. Morris+Kaashoek/Chambers 12. Amarasinghe/Gnawali

12:00 5. Ernst/Salz 14. Witchel/Bauer

1:00 8. Ernst/Yip 3. Leiserson/Freedman 10. Teller/Bauer

7. Saltzer/Vandiver

2:00 9. Saltzer/Freedman 4. Leiserson/Vandiver 15. Teller/Bhattacharyya

Do not write in the boxes below

1-2 (xx/16) 3-5 (xx/24) 6 (xx/4) 7-10 (xx/32) 11-13 (xx/24) Total (xx/100)

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 2 of 11

I Appetizers

1. [8 points]: A system administrator in Tech Square notices that a file server’s disk is failing for
two unrelated reasons. Once every 30 days, on average, vibration due to nearby construction breaks
the disk’s arm. Once every 60 days, on average, a power surge destroys the disk’s electronics. The
system administrator fixes the disk instantly each time it fails. The two failure modes are independent
of each other, and independent of the age of the disk.

What’s the mean time to failure of the disk?
(Circle the BEST answer)

A. 45 days.

B. 30 days.

C. 22.5 days.

D. 20 days.

2. [8 points]: The checkpoint operation in System R (Reading #21) invokes FILESAVE on files.
Which of the following statements about System R’s checkpoint and recovery mechanisms are true?
Assume that neither the log nor the data on the database disk are lost during a crash.

(Circle ALL that apply)

A. System R requires losers to be undone while recovering from a crash because it checkpoints at
times that are not transaction-consistent.

B. System R requires winners to be redone while recovering from a crash because it checkpoints at
times that are not transaction-consistent.

C. If all System R checkpoints happened at transaction-consistent times, then the recovery process
would not have to scan the log further back than the time of the last checkpoint.

D. The System R checkpoint mechanism does not allow running transactions to straddle more than
one checkpoint operation, in order to limit the size of the log.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 3 of 11

3. [8 points]: Consider the choice of segment size in a log-structured file system (LFS; Reading
#18). Suppose that a disk has a latency of 10 milliseconds for seek and rotation combined, and a
data transfer rate of 20 Megabytes per second for any non-zero-length disk write. Assume that each
segment write requires only one disk seek operation. What’s the smallest segment size that would
always allow a complete segment to be written at 90% of the disk data transfer rate?

(Circle the BEST answer)

A. 1 Megabyte.

B. 1.8 Megabytes.

C. 3.6 Megabytes.

D. 18 Megabytes.

4. [8 points]: The Coda file system (Reading #22) allows disconnected clients to modify files
and reintegrate their changes upon reconnection. Which of these statements are true of the system
described in the paper?

(Circle ALL that apply)

A. Upon reintegration, a Coda server detects conflicts by checking the client log and comparing old
and new values in the log, using the file storeid as a transaction identifier.

B. If two disconnected clients operate on different parts of a non-directory file and later reconnect
to the server, the Coda server automatically merges the two clients’ changes.

C. During reintegration, if any non-directory file has a write/write conflict, Coda (as implemented
in the paper) aborts the reintegration transaction on the entire volume.

D. Suppose two clients A and B get disconnected at the same time, caching file F . A writes file F ,
closes F , and successfully reintegrates all its changes with the Coda server upon reconnection.
Meanwhile, client B performs several reads on file F . When B reconnects later and reintegrates,
the Coda server will inform B of a conflict, warning that it had read a potentially old version of
file F while disconnected.

5. [8 points]: According to Prof. Saltzer’s lecture, which of these statements about complex systems
are true?

(Circle ALL that apply)

A. Complex systems usually fail for complex reasons.

B. Systems that work often do so for reasons not thought of by the designer.

C. The high rate of change of technology makes it easier to design computer systems because one
does not need to worry about performance.

D. Brooks argues that the rationalism approach to system design leads to better systems than the
empiricism approach because it is more systematic.

E. Systems that have theme songs are more likely to succeed.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 4 of 11

II ANTS: Advanced “Nonce-ensical” Transaction System

Sara Bellum, forever searching for elegance, sets out to design a new transaction system called ANTS
based on the idea of nonces from 6.033. She observes that the locking schemes she learned in 6.033 cause
transactions to wait for locks held by other transactions. She observes that it is possible for a transaction to
simply abort and retry, instead of waiting for a lock. A little bit more work convinces her that this idea may
allow her to design a system in which transactions don’t need to use locks for isolation.

Sara sets out to write pseudocode for the following functions: BEGIN(), READ(), WRITE(), COMMIT(),
ABORT(), and RECOVER(). She intends that, together, these functions will provide transaction semantics:
isolation, recoverability, and durability. You may assume that once any of these functions starts, it runs to
completion without preemption or failure, and that no other thread is running any of the functions at the
same time. The system may interleave the execution of multiple transactions, however.

Sara’s implementation assigns a transaction identifier (TID) to a transaction when it calls BEGIN(). The
TIDs are integers, and ANTS assigns them in numerically increasing order.

Sara’s plan for the transaction system’s storage is to maintain cell storage for variables, and a write-ahead
log for recovery. Sara implements both the cell storage and the log using stable storage. The log contains
the following types of records:

• BEGIN TID

• COMMIT TID

• ABORT TID

• WRITE TID, Variable Name, Old Value

Sara implements BEGIN(), COMMIT(), ABORT(), and RECOVER() as follows:

• BEGIN() allocates the next TID, appends a BEGIN TID record to the log, and then returns the TID.

• COMMIT(TID) appends a COMMIT TID record to the log before returning.

• ABORT(TID) undoes all of transaction TID’s WRITE() operations by scanning the log backwards and
writing the old values from the transaction’s WRITE records back to the cell storage. After completing
the undo, ABORT() appends an ABORT TID entry to the log, and returns.

• RECOVER() is called after a crash and restart, before starting any more transactions. It scans the log
backwards, undoing each WRITE record of each transaction that had neither committed nor aborted
at the time of the crash. RECOVER() appends an ABORT record for each such transaction.

Sara’s isolation intention is that the result of executing multiple transactions in parallel is the same as
executing those same transactions one at a time, in increasing transaction ID order.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 5 of 11

Sara wants her READ() and WRITE() implementations to provide isolation by adhering to the following rule.
Suppose a transaction with TID t executes READ() on the variable X . Let u be the highest transaction ID
< t that calls WRITE() on X and commits. The READ() executed by t should return the value that u writes.

Sara observes that this rule does not require her system to execute transactions in strict TID order; for
example, the fact that two transactions call READ() on the same variable does not (by itself) constrain the
order in which the transactions must execute.

To see how Sara intends ANTS to work, consider the following two transactions:

TRANSACTION TA TRANSACTION TB

1 ta ← BEGIN() (returns 15)
2 tb ← BEGIN() (returns 16)
3 va ← READ(ta, X);
4 va ← va + 1;
5 vb ← READ(tb, X);
6 vb ← vb + 1;
α WRITE(ta , X , va); WRITE(tb , X , vb);
β COMMIT(ta); COMMIT(tb);

Each transaction marks its start with a call to BEGIN(), then reads the variable X from the cell store and
stores it in a local variable, then adds one to that local variable, then writes the local variable to X in the cell
store, and then commits. Each transaction passes its transaction ID (ta and tb respectively) to the READ(),
WRITE(), and COMMIT() functions.

These transactions both read and write the same piece of data, X . Suppose that TA starts just before TB ,
and Sara’s BEGIN() allocates TIDs 15 and 16 to TA and TB , respectively. Suppose that ANTS interleaves
the execution of the transactions as shown through line 6, but that ANTS has not yet executed lines α and
β. You can assume that no other transactions are executing, and that no failures occur.

6. [4 points]: In this situation, which of the following actions can ANTS take in order to ensure
isolation?

(Circle ALL that apply)

A. Force just TA to abort, and let TB proceed.

B. Force just TB to abort, and let TA proceed.

C. Force neither TA nor TB to abort, and let both proceed.

D. Force both TA and TB to abort.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 6 of 11

To help enforce the isolation intention, Sara’s implementation of ANTS maintains the following two pieces
of information for each variable:

• ReadID — the TID of the highest-numbered transaction that has successfully read this variable using
READ().

• WriteID — the TID of the highest-numbered transaction that has successfully written this variable
using WRITE().

Sara defines the following utility functions in her implementation of ANTS:

• INPROGRESS(TID) returns false if TID has committed or aborted, and otherwise true. (All transac-
tions interrupted by a crash are aborted by the RECOVER function.)

• exit() terminates the current thread immediately.

• LOG() appends a record to the log and waits for the write to the log to complete.

• read data(x) reads cell storage and returns the corresponding value.

• write data(x, v) writes value v into cell storage x.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 7 of 11

Sara now sets out to write pseudocode for READ() and WRITE(). (The last page of this quiz has a copy you
can tear out for easy reference.)

Lines are numbered 1–13 in READ().

1 FUNCTION READ(TID tid, Cell x)
2 // Return the value stored in cell x

3 if (tid < WriteID(x)) {
4 ABORT(tid); exit();
5 }
6 if ((tid > WriteID(x)) AND INPROGRESS(WriteID(x))) {
7 // Last transaction to have written x is still in progress
8 ABORT(tid); exit();
9 }
10 // In all other cases execute the read
11 v ← read data(x);
12 ReadID(x)← max(tid, ReadID(x)); // Update ReadID(x)
13 return v;

Lines are numbered A–N in WRITE().

A FUNCTION WRITE(TID tid, Cell x, DataValue v)
B // Store value v in cell storage x

C if (tid < ReadID(x)) {
D ABORT(tid); exit();
E } else if (tid < WriteID(x)) {
F Statement (I); // See Question 8
G } else if ((tid > WriteID(x)) AND INPROGRESS(WriteID(x))) {
H ABORT(tid); exit();
I }
J LOG(WRITE, tid, x, read data(x));
K write data(x, v);
L // Now update WriteID(x)
M Statement (II); // See Question 10
N return;

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 8 of 11

Help Sara complete the design above by answering the following questions.

7. [8 points]: Consider lines 6–9 of the READ pseudocode. Sara is not sure if these lines are
necessary. If lines 6–9 are removed, will the implementation preserve Sara’s isolation intention?

(Circle ALL that apply)

A. Yes, the lines can be removed. Because the previous WRITE to x (by the transaction with TID
WriteID(x)) cannot be affected by transaction tid, read data(x) can execute.

B. Yes, the lines can be removed. Suppose transaction T1 successfully executes WRITE x, and then
transaction T2 executes READ x before T1 commits. After this, T1 cannot execute WRITE x

successfully, so T2 would have correctly read the last written value of x from T1.

C. No, the lines cannot be removed. One reason is: The only transaction that can correctly execute
read data(x) is the transaction with TID equal to WriteID(x). Therefore, the condition on line 6
of READ should simply read: “if (tid > WriteID(x))”.

D. No, the lines cannot be removed. One reason is: isolation might not be preserved when transac-
tions abort.

8. [8 points]: Consider Statement (I) on line F in the pseudocode for WRITE. Which of the
following operations for this statement preserve Sara’s isolation intention?

(Circle ALL that apply)

A. ABORT(tid); exit();

B. return; (without aborting tid)

C. Find the higher-numbered transaction T ′ corresponding to WriteID(x); ABORT(T ′) and termi-
nate thread T ′; execute write data(x, v) in transaction tid; and return.

D. All of the above choices.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 9 of 11

9. [8 points]: Consider lines G–H in the pseudocode for WRITE. Sara is not sure if these lines
are necessary. If lines G–H are removed, will Sara’s implementation preserve her isolation intention?
Why or why not?

(Circle ALL that apply)

A. Yes, the lines can be removed. We can always recover the correct values from the log.

B. Yes, the lines can be removed since this is the WRITE() call; it’s only on a READ() call that we
need to be worried about the partial results from a previous transaction being visible to another
running transaction.

C. No, the lines cannot be removed. One reason is: If transaction T1 writes to cell x and then
transaction T2 writes to cell x, then an abort of T2 followed by an abort of T1 may leave x in an
incorrect state.

D. No, the lines cannot be removed. One reason is: If transaction T1 writes to cell x and then
transaction T2 writes to cell x, then an abort of T1 followed by an abort of T2 may leave x in an
incorrect state.

10. [8 points]: Which of these operations for Statement (II) on line M preserves Sara’s isolation
intention?

(Circle ALL that apply)

A. WriteID(x)← tid

B. WriteID(x)← min(WriteID(x), tid)

C. WriteID(x)← max(WriteID(x), tid)

D. WriteID(x)← max(WriteID(x), ReadID(x))

Ben Bitdiddle looks at the READ and WRITE pseudocode shown before for Sara’s system and concludes
that her system is in fact nonsensical! To make his case, he constructs the following concurrent transactions:

TRANSACTION T1 TRANSACTION T2

1 ID1← BEGIN();
2 ID2← BEGIN();
3 WRITE(ID1, A, v1);
4 v2 ← READ(ID2, A);
5 WRITE(ID2, B, v2);
6 COMMIT(ID2);
7 v1 ← READ(ID1, B);
8 COMMIT(ID1);

The two transactions are interleaved in the order shown above. Note that T1 begins before T2. Ben argues
that this leads to a deadlock.

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 10 of 11

11. [8 points]: Why is Ben’s argument incorrect?
(Circle ALL that apply)

A. Both transactions will abort, but they can both retry if they like.

B. Only T2 will abort on line 4. So T1 can proceed.

C. Only T1 will abort on line 7. So T2 can proceed.

D. Sara’s system does not suffer from deadlocks, though concurrent transactions may repeatedly
abort and never commit.

Recall that Sara uses a write-ahead log for crash recovery. The log format is described on page 4.

12. [8 points]: Which of these statements is true about log entries in Sara’s ANTS implementation?
(Circle ALL that apply)

A. The order of BEGIN entries in the log is in increasing TID order.

B. The order of COMMIT entries in the log is in increasing TID order.

C. The order of ABORT entries in the log is in increasing TID order.

D. The order of WRITE entries in the log for any given variable is in increasing TID order.

13. [8 points]: The WRITE function appends the WRITE record to the log before it writes the
cell storage. Sara wants to improve performance by caching the stable cell storage in main memory
(which is not stable). She changes read data() to read the value from the cache if it is there; if it isn’t,
read data() reads from stable cell storage. She changes write data() to update just the cache; ANTS
will update stable cell storage later. Can ANTS delay the write to the stable cell storage until after the
COMMIT record has been written to the log, and still ensure transaction semantics?

(Circle ALL that apply)

A. No, because if the system crashed between the commit and the write to stable storage, RE-
COVER() would not recover cell storage correctly.

B. Yes, because the log contains enough information to undo uncommitted transactions after a
crash.

C. Yes, because line 3 of READ() won’t let another transaction read the data until after the write to
stable storage completes.

D. None of the above.

End of Quiz 3
Have a great summer!

Name:

6.033 Spring 2002, Handout 41 - Quiz 3 Page 11 of 11

For quick reference. You may tear this page out.

Lines are numbered 1–13 in READ().

1 FUNCTION READ(TID tid, Cell x)
2 // Return the value stored in cell x

3 if (tid < WriteID(x)) {
4 ABORT(tid); exit();
5 }
6 if ((tid > WriteID(x)) AND INPROGRESS(WriteID(x))) {
7 // Last transaction to have written x is still in progress
8 ABORT(tid); exit();
9 }
10 // In all other cases execute the read
11 v ← read data(x);
12 ReadID(x)← max(tid, ReadID(x)); // Update ReadID(x)
13 return v;

Lines are numbered A–N in WRITE().

A FUNCTION WRITE(TID tid, Cell x, DataValue v)
B // Store value v in cell storage x

C if (tid < ReadID(x)) {
D ABORT(tid); exit();
E } else if (tid < WriteID(x)) {
F Statement (I); // See Question 8
G } else if ((tid > WriteID(x)) AND INPROGRESS(WriteID(x))) {
H ABORT(tid); exit();
I }
J LOG(WRITE, tid, x, read data(x));
K write data(x, v);
L // Now update WriteID(x)
M Statement (II); // See Question 10
N return;

Name:

