
Simple Sharing and Enforced Modularity

Access Control in a Segmented Memory System

Jeff Bartelma

March 21, 2002

LIST OF FIGURES CONTENTS

Contents

1 A Segmented Memory System 3

2 Conceptual Overview of the MMU 4

3 MMU Details and Design Decisions 4

3.1 Process-Based vs Segment-Based Access Control 4
3.2 State . 4
3.3 MMU Data Structures . 5

3.3.1 Preliminary Considerations . 5
3.3.2 Final Design and Justification 6

3.4 Virtual Address Translation . 8

4 MMU Design Viability 9

4.1 Sharing Executable Code . 9
4.2 MMU-Kernel Interactions . 10

4.2.1 Protecting the Kernel . 10
4.2.2 Allocating Data Segments . 11
4.2.3 Starting Programs . 12
4.2.4 Changing Permissions . 12

4.3 Enforced Modularity . 12

5 Summary 13

List of Figures

1 Two processes sharing a segment of executable code. The dotted line
indicates unauthorized sharing allowed by segment-based access control. 5

2 Structure of the SegmentTable. 6
3 Structure of the PermissionsTable. 7
4 Protecting the kernel. The column of zero bits at left indicates that no

process besides the kernel has access to the kernel’s segment; the row
of twos at top indicates that the kernel has read/write access to every
other memory segment. 10

2

1 A SEGMENTED MEMORY SYSTEM

Abstract

All programs in a segmented memory system share the same address space.
This arrangement makes sharing data very simple, but it also makes protecting
data difficult. This paper presents the design of a memory management unit
(MMU) that is able to enforce modularity within the single address space of a
segmented system. The MMU draws on permission tables in main memory to
act as an integrated virtual address translator and access control mechanism.
The MMU’s data structures and algorithms are demonstrated in the context of
supporting standard O/S features such as memory allocation.

1 A Segmented Memory System

Most virtual memory systems provide each program module with a distinct address
space, tied to physical memory that is invisible to other modules. By restricting each
module’s view of memory, this “standard model” of virtual memory provides excellent
fault isolation.
However, to claim the advantage of modularity, a programmer adopting the stan-

dard model forfeits a convenient interface for sharing memory. Two programs at-
tempting to access the same physical location must use the different virtual addresses
specified in their respective page maps.
Sharing would be simpler if all processes ran in the same address space, that is, if

any program could reference any piece of data, irrespective of the program that owns
it. Ideally, we would like to retain isolation while providing this palatable interface for
sharing.

One way to approach this problem is to use a segmented memory system: divide
the single address space into a number of “segments” and interpret the b high-level
bits of each CPU-issued virtual address as a segment number. The remaining bits of a
virtual address are used as an offset into the segment. This bitwise translation means
that any process referring to a particular virtual address V is talking about the same
physical location, as we desire for a simple interface.
Retaining isolation in such a system requires a memory management unit (MMU)

to intercept each virtually addressed memory request issued by the CPU and ensure
that it is “legal” before translating and passing it to main memory.

A good MMU must enable a program to prevent all other programs from accessing
its segments. That is, the MMU must be able to enforce modularity. At the same time,
the MMU must facilitate useful sharing; for example, two instances of Emacs should be
able to share the same segment of executable code while maintaining distinct, private
data segments. Finally, the MMU must protect the kernel and provide support for its
memory-related tasks, e.g., allocating segments or starting programs from within other
programs.
This paper presents an MMU design to support segmented memory for the 32-bit

Beta processor, and demonstrates its viability in light of the constraints mentioned
above.

3

3 MMU DETAILS AND DESIGN DECISIONS

2 Conceptual Overview of the MMU

To achieve enforced modularity in a segmented memory system, each process must be
able to protect its segments from other processes as it sees fit. The O/S must therefore
maintain a database of permission information describing which processes are allowed
to read from, write to, or execute in each memory segment. The kernel must update
this permissions table whenever it services a system call to allocate a new data segment,
spawn a new process, or change the permissions of a segment.
The MMU works by synthesizing queries to this permissions table from three pieces

of information:

1. The process making a memory request.

2. The memory segment this process wishes to access.

3. The type of access (read, write, and/or execute) the process is asking for.

Subsequent sections will more closely examine the MMU’s state, data structures,
and address translation algorithm.

3 MMU Details and Design Decisions

The following subsections discuss the Beta MMU design in detail and explain the
reasoning behind each design decision.

3.1 Process-Based vs Segment-Based Access Control

To design an MMU capable of enforcing modularity in every case, it is necessary
to distinguish process-based access control from segment-based access control. An
example will help to illustrate the difference.
Suppose two instances of MATLAB, A and B, are sharing executable code in seg-

ment X. Suppose further that instance A should be allowed access only to data seg-
ment C, while instance B must be allowed access only to data segment D. If the MMU
had data specifying only that code in segment X should be allowed access segment
C (segment-based access control), it would fail to stop instance B of MATLAB from
illegally accessing A’s private data. See Figure 1. To prevent this problem, the MMU
must control access to segments based on the process, not segment, that generated the
memory request.

3.2 State

The MMU uses two state registers. In accord with the preceding discussion, one of
these registers—maintained by the kernel—must contain the ID number of the process
that generated a memory request. To enable this processID to act as a table index, the
kernel is required to sequentially number its list of active processes. The kernel itself
should always be process 0.

4

3 MMU DETAILS AND DESIGN DECISIONS 3.3 MMU Data Structures

X: shared MATLAB code

data segment C

data segment D

physical memory

MATLAB
A MATLAB

B

Figure 1: Two processes sharing a segment of executable code. The dotted line indicates unauthorized
sharing allowed by segment-based access control.

The second MMU register, maintained by a few simple wires from the CPU, must
contain the opcode of the instruction that generated the memory request. The opcode
indicates whether a memory reference is a LD (read), ST (write), or JMP/BR (execute)
request.

3.3 MMU Data Structures

3.3.1 Preliminary Considerations

An MMU needs data structures to store information about memory segments and
permissions. However it is necessary to settle two preliminary design considerations
before discussing suitable data structures.
First the MMU must know how to interpret the 32 bits of a virtual address. My

design treats the high-level 8 bits of a virtual address as a segment number, and
the remaining 24 as an offset. This arrangement permits a reasonable 256 memory
segments, each of maximum physical size 224 bytes. The maximum number of segments,
we shall see, has implications for the way the MMU should store its data.
The second preliminary issue is to decide exactly what information about segments

should be kept by the MMU to best meet its design criteria.

• To translate virtual addresses, the MMU needs to know the physical address

corresponding to the beginning of each segment.

• To support segments of different physical size, the MMU needs to keep a length

attribute for each segment. Then, isolating a small program in its own segment
will not waste physical memory.

• To restrict access to uninitialized segments, the MMU should keep a validity bit

for each segment. For instance, if the kernel has allocated only segments 1-35
to programs, a reference to an address in segment 212 should return an illegal
address fault, because the physical address of this segment is undefined.

5

3 MMU DETAILS AND DESIGN DECISIONS 3.3 MMU Data Structures

• Finally, to enforce modularity, the MMU must retain process/segment access
permissions.

With these issues settled it is possible to consider the merits and drawbacks of
various data structures.

3.3.2 Final Design and Justification

I will first present the final structure for the MMU data tables, then I will follow with
a detailed justification.

Data about memory segments is split into two tables, a SegmentTable and a Per-

missionsTable. These tables reside contiguously in the above order at a hard-wired
location. This location is accessible only to the kernel, which has permission to read
and write the tables.
The differing purposes of the SegmentTable and PermissionsTable are best served

by different organizations. The SegmentTable is indexed by segment and contains in-
formation pertaining to the physical aspects of each. The ith row contains the physical
address, length, and validity of segment i. See Figure 2. The SegmentTable has a
constant size of 256x3 fields.

physAddrlengthvalid

0
1
2
3
4
5
6

253

255
254

1 2^24 0
1
1
1
1
1
1

0
0
0 garbage garbage

garbage garbage
garbage garbage

2^242^7
etc.

252

se
g

m
en

t
n

u
m

b
er

Figure 2: Structure of the SegmentTable.

By contrast, the PermissionsTable is indexed by process. The jth row contains 256
access codes denoting process j’s access level to each of the segments. See Figure 3.
The access codes used in this table are shown in Table 1. The PermissionsTable has a
variable size of Px256, where P is the number of processes currently running.
I arrived at the structural specifications above by breaking the design process into

a sequence of questions and answering each in turn.

1. Should permissions be maintained in one large table or in a separate array for
each process?

Answer: One large table.

6

3 MMU DETAILS AND DESIGN DECISIONS 3.3 MMU Data Structures

.
.

.
.

.

1 2 3

.
.

.
.

.

0

p
ro

ce
ss

 ID

segment number

1
0

252 255254251 253

(P-1)

 7654 8

P

4
3
2

Figure 3: Structure of the PermissionsTable.

access code permission granted

0 no access
1 read-only
2 read, write
3 execute
4 rd, wr, ex

Table 1: PermissionsTable access codes and the corresponding interpretations.

In the latter case, starting a new process entails finding a safe place to store its
array of access permissions. To absolutely guarantee the integrity of this array
we should allocate it a private segment, but this is a terrible waste of virtual
address space. Moreover, the system must keep track of the location of every
such array, requiring a large, variable number of MMU state registers.

On the other hand, if the data is kept in one large chunk that never moves we
may avoid adding MMU state by hardwiring its starting address. Also, we can
protect all the permissions data together by placing this large chunk in a single
protected segment; we don’t need to waste a significant fraction of the virtual
address space storing permissions.

2. Should permissions data be organized by process or segment?

Answer: By process.

The choices are as follows.

(a) For each segment, keep a list of the processes that are allowed access.

(b) For each process, keep a list of the segments it can access.

In organization (a), the permissions table can have only as many rows as seg-
ments, but it is as wide as the number of processes. This is actually a terrible
disadvantage, because adding a new process corresponds to widening every row
of the table by one entry. This in turn requires readdressing all but the first row

7

3 MMU DETAILS AND DESIGN DECISIONS 3.4 Virtual Address Translation

of the table! A constant offset from the location marking the beginning of the
MMU data tables may correspond to row 4 of the table, or row 40, depending on
the number of processes running.

Organization (b) requires separating data about a segment’s physical attributes
from data about permissions, because physical segment information is indexed by
segment, and we are indexing permissions by process. However, this is a minor
drawback. The real news is that adding a new process does not require the whole
table to be readdressed. Rather than widening each row of the table, adding a
process simply tacks a new row on the end. This is an enormous advantage over
organization (a).

3. Should the width of each PermissionsTable row be fixed at maximum (256, the
number of segments), or should each row be allowed a different length?

Answer: The width should be fixed at 256.

Since the average row of the PermissionsTable will contain mostly zeroes (i.e.,
the average process will have no access to most segments), we could save space by
keeping explicit access codes for only those rare segments granting non-default
access. However, this “optimization” creates table rows of varying length. Again
this makes reliable offset addressing into the table from a fixed location impossi-
ble. It only makes sense to bear the additional complexity of this scheme if the
system has an extraordinarily small memory or such a large number of segments
that it is impractical to store an explicit access code for each process/segment
combination.

3.4 Virtual Address Translation

Because all memory requests must pass through the MMU’s virtual address transla-
tion procedure, this is a natural place to implement access control. The translation
procedure queries the SegmentTable and PermissionsTable described in the previous
section using the virtual address, as well as the opcode and processID gathered from
the MMU’s two registers. Although the translation procedure would be implemented
in hardware, its duties may be represented conceptually as follows:

8

4 MMU DESIGN VIABILITY

#define SEGMENTMASK 0x000000FF

#define OFFSETMASK 0x00FFFFFF

int translate (int virtual, int opcode, int processID) {

int segmentNum = (virtual>>24) & SEGMENTMASK;

int offset = virtual & OFFSETMASK;

if(SegmentTable[segmentNum].valid==1){ // is segment valid?

struct SegmentDescriptor segment = SegmentTable[segmentNum];}

else return ILLEGAL_ADDRESS_FAULT;

int accessCode=PermissionTable[processID][segmentNum];

/* case analysis based on access code and opcode */

bool accessAllowed=caseAnalysis(accessCode, opcode);

if ((offset<segment.length) && accessAllowed){

return segment.physAddr+offset;}

else return ILLEGAL_ADDRESS_FAULT;

}

4 MMU Design Viability

The following sections demonstrate the viability of the MMU design by outlining how
the O/S and user applications can use it to realize the design goals of a segmented
memory system.

4.1 Sharing Executable Code

One potential advantage of a segmented memory system is the ability for two instances
of a program to share executable code. If the program is large, this tactic can save a
significant amount of memory.
Recall the MATLAB code-sharing example used to motivate process-based access

control in section 3.1. Having examined the MMU design in detail, we may take a
closer look at how the MMU provides the capability to share code.
Thus, consider once more two instances of MATLAB, A and B, again with respec-

tive private data segments C and D, sharing executable code from the same segment X.
When instance A is executing, the code running in segment X must store its variables
in segment C, and when instance B is executing, the code in X must use D for stor-
age. While this situation appears confusing to a human, to the MMU, the MATLAB
instances A and B are as different as any other pair of processes. The MMU prevents
process A from accessing process D using the same method as always: indexing the
PermissionsTable using the current processID, and checking permission codes for the
segments being requested.

9

4 MMU DESIGN VIABILITY 4.2 MMU-Kernel Interactions

While these checks prevent each instance of MATLAB from corrupting the other’s
private data, they do not explain how two processes running identical code know to
ask for their respective data segments in the first place. When a context switch occurs
making A the current process, the kernel restores A’s saved stack pointer and other
registers. Because A’s stack pointer points to a location in C, A asks for and finds its
mutable data in segment C.

4.2 MMU-Kernel Interactions

In order to show that the MMU can enforce modularity, it is first necessary to examine
the ways the kernel and MMU interact. The following sections explore how the MMU
protects the kernel, and how the kernel modifies the MMU’s data structures in the
course of common O/S functions.

4.2.1 Protecting the Kernel

A good segmented memory system should be able maintain kernel integrity using the
same mechanisms that protect user programs. We can use the MMU to restrict access
to the kernel as follows. First, the kernel process should be permanently fixed in
segment 0, and its row of permissions set to [3 2 2 ... 2]. Then the kernel can execute
in its own segment, and read and write every other segment. Whenever the kernel
starts a new process (more on this shortly), it must set the first bit of the new process’
permission vector to value 0 (no access). See Figure 4. Then regardless what process
ID is in the MMU’s register, the kernel code in segment 0 can be read, written, or
executed by no other process.
In particular, provided the kernel’s instruction for updating the process ID register is

located inside segment 0, access to this instruction is limited by the MMU to the kernel
process. With this access restriction already in place, a supervisor bit is not needed to
further protect the kernel, and it can be eliminated from the Beta specification.1

6540 1 7

(P-1)
P

4
3
2

82

.
.

.
.

.

.
.

.
.

.

0

3

0
0
0

0
0

0

kernel

p
ro

ce
ss

 ID

segment number

22

process
254252251 253 255

kernel segment

22223
1

2 222222

Figure 4: Protecting the kernel. The column of zero bits at left indicates that no process besides
the kernel has access to the kernel’s segment; the row of twos at top indicates that the kernel has
read/write access to every other memory segment.

1Of course, interrupts would have to be handled by an alternative mechanism.

10

4 MMU DESIGN VIABILITY 4.2 MMU-Kernel Interactions

Of course, programs must still be able to make system calls requesting services from
the kernel. How does execution get into the kernel? Just as in the virtual memory
system described by Saltzer and Kaashoek[1], system calls should directly invoke a
processor-provided hardware mechanism. However, this mechanism (which the Beta
must now supply) executes a slightly different set of atomic actions:

1. Save the value of the MMU’s processID register, and change it to 0, the kernel’s
fixed process number.

2. Save the program counter, and reload it with the address of the kernel’s entry
point, 0x00000000.

Similarly, to safely exit the kernel, the following actions must be executed atomi-
cally:

1. Reload the MMU’s processID register from the value saved upon entering the
kernel. Since the kernel is always process 0, we needn’t save this register first.

2. Reload the program counter from its saved location.

Should the kernel need to perform a context switch during a system call it has
only to replace the value of the processID register with the number of the process it is
switching to, then load the program counter with the entry point of that process.

4.2.2 Allocating Data Segments

We would like for a program to be able to allocate new segments to hold data. This is
also done using a system call, perhaps of form

int systemAllocateNewSegment(int length, int[] permissions)

The kernel handles such a call by looping down the SegmentTable, looking for the first
row with a valid bit of 0. The segment corresponding to this row is the first unallocated
segment. If there is no such row in the SegmentTable, the system has already allocated
all 256 segments and must return a fault. The kernel checks to make sure the length
request is fine (that is, less than 224 or the amount of remaining physical memory,
whichever is smaller). If this test checks out okay, the kernel changes the segment’s
valid bit to 1, sets the length as specified, and assigns an appropriate physical address.
Immediately thereafter, the kernel replaces all but the topmost (kernel’s) entry of the

corresponding column of the PermissionsTable with the values specified in the system
call. This is not a security hazard: the parent process is simply specifying which
processes may access its data segment. Normally, we expect the parent process to
endow itself alone read/write access, but these permissions are purely discretionary.
Finally, the system call returns the first virtual address of the new segment to the
program.

11

4 MMU DESIGN VIABILITY 4.3 Enforced Modularity

4.2.3 Starting Programs

Similarly, we would like for a running program to be able to start other programs. For
instance, typing the name of an executable in a shell should start that program. The
first step of this procedure should be to allocate a new segment to hold the program’s
code. But unlike allocating a new data segment, starting a new process raises potential
security pitfalls.
For example, if Emacs creates a new data segment and decides to make it writable

by all other processes, it is a curious situation but the program’s prerogative. On
the other hand, if the user starts Netscape, Emacs, and an xterm window using the
shell command line, the shell should not have write access to the memory of all these
processes! To enforce modularity, the kernel must therefore initialize the new segment’s

column in the permission table with all zeroes except for the first entry, which must
be a 2. This is so process 0, the kernel, retains read and write access to the new data
segment as always.
The next step is to start the new process. The kernel copies the program text to

the newly allocated segment and adds a line for the new process to the bottom of the
PermissionsTable. This line is required to be zero everywhere except for the location
corresponding to the newly allocated segment. This entry of the PermissionsTable
should be a 4, such that the program has read, write and execution access to its
segment.

It is absolutely crucial that whenever the kernel adds a new row to the Permission-

sTable, every entry is 0 except that of the new segment. Otherwise the new process has
been given unauthorized access to all segments with nonzero entries, and modularity
cannot be enforced.
In pseudocode form, the system call to start a new program might look like

int systemStartNewProgram(int length, programText){

addr=systemAllocateNewSegment(int length, int[] allZeroesButFirst);

copyProgTexttoNewSeg(addr, programText)

addLinetoPermissionTable();

}

4.2.4 Changing Permissions

But what if the new process really does want to share its segments? The system call
above does not allow for this possibility. Finally, the kernel must provide a system call
by which a properly authorized process may grant other processes access to its seg-
ments. It is assumed that the kernel has some facility for interprocess communication
or other means by which one process may know of another and obtain its processID.

4.3 Enforced Modularity

We have seen how each common MMU-kernel interaction, e.g., allocating data seg-
ments, can be made to preserve enforced modularity using careful MMU table modifi-
cations as detailed above. In other words, the MMU and its kernel interface provide a

12

REFERENCES

way for programs allocating new data segments or starting other programs to ensure
their segments will not be written, read, or executed by other processes.

The argument that the MMU design is sufficient to enforce modularity in general is,
loosely speaking, inductive. Given that the kernel starts off isolated in segment 0 and
that allocating new data segments, starting new programs, etc. can be done in such
a way as to enforce modularity, the MMU design can be said to enforce modularity.
This is notable because all processes reside within a single address space; each process
can see, but still not access, virtual addresses it does not own.

5 Summary

The primary motivation for creating a segmented memory system is to simplify data
sharing. However, because such a system allows any process to reference any piece
of data, even in another program, careful access controls must be enacted. I have
presented a memory management unit (MMU) design to support segmented memory
for the 32-bit Beta processor. I have also argued that the design is sufficient to support
common O/S tasks and enforce modularity even though all processes run in a shared
address space.

References

[1] J. Saltzer and F. Kaashoek. Topics in the Engineering of Computer Systems, draft
January 2002.

13

