

L10: Network Systems

Frans Kaashoek 6.033 Spring 2011

http://web.mit.edu/6.033

Some slides are from lectures by Nick Mckeown, Ion Stoica, Dina Katabi, Hari Balakrishnan, Sam Madden, and Robert Morris

What have you seen so far?

Systems	Complexity	Hierarchy
	Modularity	Therac-25
	Dtechnology/dt	
Naming systems	Gluing systems	File system name space/DNS
Client/service design	Enforced modularity	X windows
Operating systems	Client/service with in a computer	Eraser and Unix
Performance	Coping with bottlenecks	MapReduce

Client/service using network

- Sharing irrespective of geography
- Strong modularity through geographic separation

Network is a system too!

- Network consists of many networks, many links, many switches
- Internet is a case study of successful network system

Today's topic: challenges and approach

- Economical:
 - Universality
 - Topology, Sharing, Utilization
- Organizational
 - Routing, Addressing, Packets, Delay
 - Best-effort contract
- Physical
 - Errors, speed of light, wide-range of parameters
- Approach: protocols and layering

Asynchronous Multiplexing/ Demultiplexing

- Multiplex using a queue
 - Switch need memory/buffer
- Demultiplex using information in packet header
 - Header has destination
 - Switch has a forwarding table that contains information about which link to use to reach a destination

Pareto ON/OFF periods

Exponential ON/OFF periods

Queue length

Statistical multiplexing

Aggregate Internet Traffic Smooths

5-min average traffic rate at an MIT-CSAIL router

Max In:12.2Mb/s Max Out: 12.8Mb/s

Avg. In: 2.5Mb/s Avg. Out: 3.4 Mb/s

Networks are heterogeneous

d(technology)/dt for networks

Internet: Best Effort

No Guarantees:

- Variable Delay (jitter)
- Variable rate
- Packet loss
- Duplicates
- Reordering