6.033
Reliability & Congestion Control

March, 2011

E2E Transport

* Reliability: “At Least Once Delivery”

— Lock-step
— Sliding Window

* Congestion Control
— Flow Control
— Additive Increase Multiplicative Decrease

“At Least Once” (Take 1): Lock-Step

Receiver

Sender| Receiver Senderl:
1 RTT X<

Timeout and|
retransmit
RTT = round trip time

* Each data packet has a sequence number set by sender

e Receiver: upon receipt of packet k, sends acknowledgment (ack)
for k (“I got k”)

* Sender: Upon ack k, sends k+1. If no ack within timeout, then
retransmit k (until acked)

How Long to Set Timeout?

Sender, Receiver
* Fixed timeouts don’t work well
— Too big = delay too long X

— Too small =2 unnecessary
retransmission

<

e Solution Timeout-

— Timeout should depend on RTT

— Sender measures the time between
transmitting a packet and receiving Sender Receiver
its ack, which gives one sample of
the RTT

v ’,,*”/’

But RTT Could Be Highly Variable

450 +

400 +

350 +

300 + //\/\

250 - ,&//

200 -
150 +
100 +
50 +

0

RTT [ms]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample index

Example from a TCP connection over a wide-area wireless link
Mean RTT = 0.25 seconds; Std deviation = 0.11 seconds!

Can’t set timeout to an RTT sample; need to consider variations

Calculating RTT and Timeout: (as in TCP)

Exponentially Weighted Moving Average (EWMA)

 Estimate both the average rtt_avg and the deviation rtt_dev

* Procedure calc_rtt(rtt_sample)
rtt_avg € a*rtt_sample + (1-a)*rtt_avg; /*a=1/8 */
dev €< absolute(rtt_sample — rtt_avg);
rtt_dev € b*dev + (1-b)*rtt_dev; [*b=1/4*/

* Procedure calc_timeout(rtt_avg, rtt_dev)
Timeout €< rtt_avg + 4*rtt_dev

Improving Performance

* Lock-step protocol is too slow: send, wait

for ack, send, wait for ack, ...

Sender Receiver
 Throughput is just one packet per RTT

Ildle i)
e Solution: Use a window

— Keep multiple packets in the network at
once
— overlap data with acks

B /g

R
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

At Least Once (Take 2): Fixed Window

Sender

4-6

Ma ’Sendy

-
o, 2

4

%\

Receiver

S

Idle

_2
-
-
_-
-
/, ”
" -
- -
4” ”
- ,f’ -
4- -- --
-
- -
/,’ -
4"
-
-
-
-
_ -
_-
4~
\; \

Receiver tells the sender a
window size

Sender sends window

Receiver acks each packet as
before

Window advances when all pkts
in previous window are acked

— E.g., packets 4-6 sent, after 1-3 ack’d
If a packet times out =2 rxmit pkt

Still much idle time

At Least Once (Take 3): Sliding Window

e Sender advances the window
by 1 for each in-sequence ack
It receives

— Reduces idle periods
— Pipelining ideal!

Sender Receiver

e But what’s the correct value
for the window?

— We’'ll revisit this question
|dle

' — First, we need to understand
windows

Sliding Window in Action

Example: W =5; We show how the window slides with ack arrivals

windewindadwd= 2-6

4 5|6
Sndr ==

1 2 3
N N

Revr \
d1

Sliding Window in Action

Example: W =5; We show how the window slides with ack arrivals

wingavdewl =63-7

1
Sndr [

2 3 45 6|7

/ 4

Rcvr

Sliding Window in Action

Example: W =5; We show how the window slides with ack arrivals

windemndaiv/= 4-8

Sndr

Rcvr

Handling Packet Loss

windoiwdew-5 2-6

Sndr

Rcvr

d1 d3
Sender advances the window on arrivals of in-sequence acks

—> Can’t advance on a3’s arrival

Handling Packet Loss

window = 2-6 d2 times out

1
Sndr L]

2 3 45 6
[(N N (N [

/
/
al
/
/
/

Rcvr

d1 d3 d4d5 dé d2
Sender advances the window on arrivals of in-sequence acks

—> Can’t advance on a3’s arrival

Handling Packet Loss

. . window = 7-11
window = 2-6 d2 times out
1123 45 ¢ l 2 7 8 910 11
- =] [[[N

/

Rcvr

d1 d3 d4d5 dé

Sender advances the window on arrivals of in-sequence acks

—> Can’t advance on a3’s arrival

What is the Right Window Size?

e Window is too small Sender Receiver
- long Idle time
- Underutilized Network

W=1-3

 Window too large

- Congestion

n n nu
PR
o U1 M

Idle

T X

E2E Transport

* Reliability: “At Least Once Delivery”

— Lock-step
— Sliding Window

* Congestion Control
— Flow Control
— Additive Increase Multiplicative Decrease

Setting Window Size: Flow Control

Infinite Infinite

‘ Capacity @ Capacity ‘

Packets M’L

Window < Receiver Buffer
— Otherwise receiver drops packets

Setting Window Size: Congestion

Infinite Capacity = 10

‘ Capacity @ packets/s ‘

 Sender transmits faster than S
bottleneck capacity Packets

—Queue builds up
- Router drops packets

* Tx Rate < Bottleneck Capacity
 Tx Rate = Window / RTT

Window < min(Receiver Buffer, Bottleneck Cap * RTT)

Setting Window Size: Congestion

Infinite Capacity = 10

‘ Capacity @ packets/s ‘

Q/ i

Bottleneck may be shared

—_— To link

Window < min(Receiver Buffer, cwnd)

Congestion Control Protocol adapts the congestion
window (cwnd) to ensure efficiency and fairness

Congestion Control

* Basic ldea:
— Increase cwnd slowly; if no drops =2 no congestion yet
— If a drop occurs = decrease cwnd quickly

* Use the idea in a distributed protocol that achieves
— Efficiency, i.e., uses the bottleneck capacity efficiently

— Fairness, i.e., senders sharing a bottleneck get equal
throughput (if they have demands)

Additive Increase Multiplicative Decrease

* Every RTT:
No drop: cwnd =cwnd +1
A drop: cwnd =cwnd/2

Additive Increase

cwnd= cwnd+1
cwnd= 2

cwnd =1 cwnd=3 cwnd=4
Sndr] 0 [[[[[(0 1
q < « R
D D\ D A D D\A/A/ A

Rcvr

AIMD Leads to Efficiency and Fairness

Consider two users who have the same RTT

m[;s?hrrgz\/i%?i . (cwnd,,cwnd,) Fairness line
5h aTl5 2 7 cwnd1 = cwnd2
oN
o
c
Al 2 move on %
lines parallelto N '4
fairness line 3
3 Efficiency line
ey cwndl+cwnd2 =
5y RTT*bottleneck_cap
s/
F/
y

User 1: cwnd,

Summary of E2E Transport

* Reliability Using Sliding Window
— Tx Rate = W/ RTT

* Congestion Control
— W = min(Receiver_buffer, cwnd)

— cwnd is adapted by the congestion control protocol
to ensure efficiency and fairness

— TCP congestion control uses AIMD which provides
fairness and efficiency in a distributed way

