

6.033: Replication

Frans Kaashoek
With slides by Jinyang Li and Robert Morris

Fault tolerance replication

•  How to recover from a single failure?
– Wait for reboot

•  Data is durable, but service is unavailable temporarily

•  Can we continue despite failure?
–  Useful for DNS, file server, master in two phase-

commit, etc.

Replication

•  Send requests to both
•  If one is down, send to the other one

opA opA opB opB

Network partition

•  Client cannot know if a server is down
•  Different clients see different results
•  Same client may see state switching back&forth

opA opB

Consistency

•  Tolerate inconsistency
– DNS

•  Reconcile later, but may have conflicts
– Unison

•  Single-copy consistency
– Looks like one copy of the data
– Each request sees result of previous

requests

Replicated state machine (RSM)

•  RSM is a general replication method
•  RSM Rules:

– All replicas start in the same initial state
– Every replica apply operations in the same order
– All operations must be deterministic

•  All replicas end up in the same state

RSM

•  How to maintain a single order in the
face of concurrent client requests?

opA opA opB opB

opA opB opB opA

RSM using primary/backup

•  Primary/backup: ensure a single order of ops:
–  Primary orders operations
–  Backups execute operations in order

opA opB
primary backup

opA opB

opA opB

When does primary respond?

•  After backups have committed to op

1. opA

primary backup

opA 2. Prepare opA

4. Commit opA

3. OK opA

backup

5. Result opA

Challenge: failures
•  Primary failure

–  Backups ping primary periodically
–  No response: one backup becomes primary

•  What if the network between primary/backup
fails?
–  Primary is still running
–  Backup becomes a new primary
–  Two primaries at the same time!

•  Maybe partition with majority continues
–  Better agree who is that majority and what last op was

Paxos: fault tolerant agreement

•  Paxos lets all nodes agree on the same
value despite node failures, network
failures and delays

•  Extremely useful:
– e.g. Nodes agree that X is the primary
– e.g. Nodes agree that Y is the last

operation executed
•  “Paxos Made Simple” by L. Lamport

Paxos Properties

•  Correctness (safety):
– All nodes agree on the same value
– The agreed value X has been proposed by

some node
•  Fault-tolerance:

–  If less than N/2 nodes fail, the rest nodes
should reach agreement eventually w.h.p

– Liveness is not guaranteed
•  Assume: fail-stop

Paxos: general approach

•  One (or more) node decides to be the
leader

•  Leader proposes a value and solicits
acceptance from majority

•  Leader announces result or try again

Challenges
•  What if >1 nodes become leaders simultaneously?

–  What if there is a network partition

•  What if a leader crashes after deciding but before
announcing results?
–  New leader shouldn’t choose a different value ….

Paxos setup

•  Each node runs as a proposer, acceptor
and learner

•  Proposer (leader) proposes a value and
solicit acceptence from acceptors

•  Leader announces the chosen value to
learners

Strawman

•  Designate a single node X as acceptor (e.g.
one with smallest id)
–  Each proposer sends its value to X
–  X decides on one of the values
–  X announces its decision to all learners

•  Problem?
–  Failure of the single acceptor halts decision
–  Need multiple acceptors!

Strawman 2: multiple acceptors
•  Each proposer (leader) propose to all acceptors
•  Each acceptor accepts the first proposal it receives and

rejects the rest
•  If the leader receives positive replies from a majority of

acceptors, it chooses its own value
–  There is at most 1 majority, hence only a single value is chosen

•  Leader sends chosen value to all learners
•  Problem:

–  What if multiple leaders propose simultaneously and there is no
majority accepting?

Paxos solution: two phases

•  Prepare: agree to an ordered proposal #
•  Accept: agree to value for proposal #

– Each acceptor may accept multiple
proposals

•  Why do proposals have number #?
– May need multiple rounds (e.g., leader fails)
– Later rounds should supersede earlier

rounds, but if a proposal with value v is
chosen, all higher proposals have value v

Paxos state

•  Acceptor maintains across reboots:
– na, va: highest accept # and its

corresponding accepted value
– np: highest prepare # seen

•  Proposer maintains:
– myn: my proposal # in current Paxos

•  Each round of Paxos has an instance #

Proposer
•  PROPOSE(v)

choose myn > np
send PREPARE(myn) to all nodes
if PREPARE_OK(na, va) from majority then

 va = va with highest na, or choose own v otherwise
 send ACCEPT (na, va) to all
 if ACCEPT_OK(na) from majority then

 # done
 send DECIDED(va) to all

Acceptor
•  PREPARE(n)

If n > np
 np= n

 reply <PREPARE_OK, na,va>

•  ACCEPT(n, v)

If n >= np

 na = n
 va = v

 reply with <ACCEPT_OK, n>

Paxos operation: 3 phase example

Prepare,N1:1

N0 N1 N2

np=N1:0
na = va = null

np=N0:0
na = va = null

np= N1:1
na = null
va = null

ok, na= va=null

Prepare,N1:1

ok, na =va=nulll
np: N1:1
na = null
va = null

np=N2:0
na = va = null

Accept,N1:1,val1
Accept,N1:1,val1

np=N1:1
na = N1:1
va = val1

np=N1:1
na = N1:1
va = val1

ok
ok

Decide,val1 Decide,val1

Paxos properties

•  When is the value V chosen?
When majority of acceptors records na/va

•  What if an acceptor doesn’t hear
accept announcement?
Can start new round
Will choose va, if majority accepted

Understanding Paxos

•  What if more than one leader is active?
•  Suppose two leaders use different

proposal number, N0:10, N1:11
•  Can both leaders see a majority of

prepare-ok?

Scenario 1

Prepare,N0:1

N0 N1 N2

np=N1:0
na = va = null

np=N0:0
na = va = null

np= N0:1

Prepare,N1:1

np: N0:1

np=N2:0
na = va = null

Accept,N1:1,val1

np=N0:1
na = N0:1
va = val1

ok

ok
np: N1:1

Accept,N1:1,val2 np=N1:1
na = N1:1
va = val2

?

Accept,N0:1,val1

Understanding Paxos

•  What if leader fails while sending accept?

Scenario 2

Prepare,N0:1

N0 N1 N2

nh=N1:0
na = va = null

nh=N0:0
na = va = null

nh= N0:1

nh=N2:0
na = va = null

Accept,N0:1,val1

Prepare,N1:1

nh=N0:1
na = N0:1
va = val1

ok

nh=N1:1
na = N0:1
va = val1

OK,N0:1,val1

Understanding Paxos

•  What if acceptor fails after accepting?
– For example, N1
–  If N0 and N1 down, N2 must wait
–  If N0 or N1 reboots, must use N0’s val1!

•  Must log accepts + proposals (!), etc. on disk

Using Paxos for RSM

•  RSM requires consistent replica membership
– Membership: <primary, backups>
– RSM goes through a series of membership changes
<vid-0, primary, backups><vid-1, primary, backups> ..

•  Use Paxos to agree on the <primary, backups>
for a particular vid
– vid == paxos instance #

Example

vid1: N1

vid2: N1,N2

vid3: N1,N2, N3

vid4: N1,N2

All nodes start with
static config vid1:N1

N2 joins
A majority in vid1:N1
accept vid2: N1,N2

N3 joins
A majority in vid2:N1,N2
accept vid3: N1,N2,N3

N3 fails

A majority in vid3:N1,N2,N3
accept vid4: N1,N2

Viewstamp replication

•  All ops have a viewstamp vs = (instance #,
seq #)

•  To execute an op with vs, a replica must
have executed all ops < vs

•  A newly joined replica need to transfer state
to ensure its state reflect executions of all
ops < vs

•  Primary in new view is last primary, if alive
•  Otherwise, backup with highest view stamp
•  Resume responding to client after backups and

primary are in sync

Example

vid1: N1 N1

N2 vid1: N1

N2 joins

myvs:(1:50)

Many optimizations/issues

•  Send read ops only to primary
•  Garbage collect logs
•  …
•  What if replicas lie (i.e., Byzantine)?

•  Much more to say, take 6.824
– You implement a RSM w. Paxos

Summary

•  Fault tolerance -> replication
•  Consistency
•  Replicated state machine
•  Paxos to achieve consensus

– Hard case: network partition

