
L5: Operating Systems

Frans Kaashoek
6.033 Spring 2011

Operating systems

•  Today: organization
• Next week: techniques for managing

multiple activities
• Week after: virtual machines and

performance

OS challenge and goals

•  Challenge:
• one computer, many programs

• Goals:
• Multiplexing
• Protection
• Cooperation
• Portability
• Performance

Approach

•  Virtualization
•  Abstractions

One program per computer

• Memory holds instructions and data
•  CPU interprets instructions

for (;;) {
 next instruction
}

instruction

instruction
instruction

data
data

data

CPU

Main memory

Strawman solution

•  OS switches processor(s) between programs

Program 1:
for (;;) {
 next instruction
}

Program1
Program 2
Program 3

Data for P2
Data for P1

Data for P3

CPU

Main memory

Problem: no boundaries

•  A program can modify other programs data
•  A program jumps into other program’s code
•  A program may get into an infinite loop

0

232-1

Program1

Program 2
Program 3

Data for P2
Data for P1

Data for P3

Main memory

Goal: enforcing modularity

• Give each program its private memory
for code, stack, and data

•  Prevent one program from getting out
of its memory

•  Allowing sharing between programs
when needed

•  Force programs to share processor

Approach: memory virtualization

• Modify processor to support virtual addresses

0x1000

232-1

Program1

Program 2

Table for P1

Data for P2

Data for P1

Table for P2

Virtual
address

Physical
address

0

232-1

232-1

0 MMU

Physical address

Virtual address

0x8000
0x1000

0

Table records mapping

•  Each program has its own translation map
•  Physical memory doesn’t have to be contiguous

•  When switching program, switch map
•  Maps stored in main memory

MMU

Page-map
register

0x1000 0
P1’s PT

0
P2’s PT

0x2000

Space-efficient map

•  0x02020 -> 4 * 4096 + 0x20 = 0x4020

Page # Offset

20 bits 12 bits

Address

vp pp

0 3
1
2
3

0
4
5

Intel x86-32 two-level page table

•  Page size is 4,096 bytes
•  1,048,576 pages in 232
•  Two-level structure to translate

x86 page table entry

•  W: writable?
•  Page fault when W = 0 and writing

•  U: user mode references allowed?
•  Page fault when U = 0 and user references address

•  P: present?
•  Page fault when P = 0

Page fault

•  Switches processor to a predefined
handler in software
• Handler can stop program and raise error
• Handler can update the page map and

resume at faulted instruction

Naming view

•  Apply naming model:
• Name = virtual address
• Value = physical address
• Context = Page map
• Lookup algorithm: index into page map

• Naming benefits
• Sharing
• Hiding
•  Indirection (demand paging, zero-fill,

copy-on-write, …)

Threat: page map address is
unprotected

•  If program can modify page map, then
it can access any physical address

• Must protect page table!

Protecting page maps:
kernel and user mode

•  Kernel mode: can change page-map register, U/K
•  In user mode: cannot
•  Processor starts in kernel mode
•  On interrupts, processor switches to kernel mode

mov $val, %cr3

Page-map register

U/K

What is a kernel?

•  The code running in kernel mode
•  Trusted program: e.g., sets page-map, U/K register
•  All interrupt handlers (e.g. page fault) run in kernel mode

Kernel

sh ls

K

U

How transfer from U to K, and back?

•  Special instruction: e.g., int #
•  Processor actions on int #:

• Set U/K bit to K
• Lookup # in table of handlers
• Run handler

•  Another instruction for return (e.g.,
reti)
• Kernel sets U/K bit to U
• Calls reti

Process: a virtual processor

•  Kernel sets up a hard timer to deliver
interrupt every, say, 100 msec

•  Interrupts transfers control to kernel
• Kernel saves current program state

• Program counter, stack pointer, pmap reg, etc.

• Kernel choses a runnable program
• Kernel loads saved program state
• Kernel returns from interrupt
• Processors resumes execution w. new state

• No processs can hog processor

Abstractions

•  Pure virtualizing is often not enough
• E.g., Portability
• E.g., Cooperation

•  Example OS abstractions:
• Disk -> FS
• Display -> Windows
• DRAM -> heap w. allocate/deallocate

• Design of abstraction important

main() {
 int fd, n;
 char buf[512];

 chdir("/usr/rtm");

 fd = open("quiz.txt", 0);
 n = read(fd, buf, 512);
 write(1, buf, n);
 close(fd);
}

Where do abstractions live?

•  Library in user space?
• No! Program must use disk only through

abstraction

• Use kernel to enforce abstractions
• Methods of abstraction are system calls

• E.g., int 33

How does kernel read user memory?

•  read(fd, buf, 512)
•  kernel and user share page map

• E.g., user program in low addresses
• E.g., kernel in high addresses
• Page map entry has U/K bit

• Set U bit only for low addresses

Kernel complexity

•  1975 Unix kernel: 10,500 lines of code
•  2008 Linux 2.6.24 line counts:

 85,000 processes
 430,000 sound drivers
 490,000 network protocols
 710,000 file systems
1,000,000 different CPU architectures
4,000,000 drivers
7,800,000 Total

Monolithic kernel

•  Avoiding chaos:
•  Internal interfaces simplify
• Loadable kernel modules

Kernel

sh ls

Microkernel

•  Apply client/server to OS
•  Kernel maps devices into driver’s

address space

sh ls

Messages Threads Address space

File VM Driver

Micro versus monolithic

• Many kernels are monolithic
• Why change a working kernel?
• Microkernel benefits not that easy to get

• Message more costly then function calls
• Sharing between servers not that easy
• What do you do if file server is down?

•  Easy to have servers on monolithic too

Summary

• OS virtualizes for sharing/multiplexing
•  Abstract for portability and cooperation
•  Provides enforced modularity:

• Program versus programs
• Program versus kernel

