
6.033 - Operating Systems + Virtual Memory
Lecture 3
Katrina LaCurts, lacurts@mit.edu

0. Previously
 - Modularity reduces complexity
 - Naming is necessary for modularity

1. Operating Systes
 - Job: enforce modularity on a single machine
 - Also: multiplexing, isolation, cooperation, portability,

 performance, ...
 - To enforce modularity on a single machine, need to:
 - protect programs' memory from each other
 - allow programs to communicate
 - allow programs to share a single CPU
 - Virtualization is how we do that
 - Today: virtualize memory. assume one CPU per program and that
 programs don't need to communicate.

2. Virtual memory
 - Two components: main memory, CPU
 - CPU holds instruction pointer (EIP)
 - Naive method: two programs can just point to each other's memory
 (bad)
 - Another method: force programs to only use particular blocks of
 memory by having them address only part of the space.

Complicated.
 - Virtual memory addressing: let each program address the full
 32-bit space. MMU translates virtual to physical addresses.

3. Page tables
 - Idea 1: Store physical addresses, use virtual addresses as an
 index into that table
 - Problem: table is too big
 - Solution: virtual address = page number + offset. MMU maps
 virtual page numbers to physical page numbers. Keeps offset the
 same.
 - Page table entries contain other stuff. Among that stuff:
 - Present bit
 - This bit lets us know if a page resides in RAM or storage.

 That's how the OS deals with not actually having 2^32 *
(number of programs) physical addresses in RAM: pages

can live
on disk when necessary.

 - R/W bit
 - U/S bit
 - These bits let the OS know when to trigger page faults

4. Hierarchical Page Tables

 - "Normal" page tables (described above) still use a lot of space
 - Page tables have to be allocated all at once or not at all
 - Hierarchical page tables solve this by creating a hierarchy of
 page tables and allocating each table only when it's needed.
 - Virtual addresses get divided into multiple parts, one part per

 level in the hierarchy + an offset.
 - Downside? Speed. Multiple lookups instead of one.

5. Kernel
 - Virtualized memory doesn't protect the page table
 - Kernel mode vs. user mode does this
 - Switch between user and kernel modes via interrupts

6. Abstraction
 - Some things can't be virtualized (disk, network, ..)
 - OS abstractions (system calls) make these things portable
 - System calls are implemented as interrupts

7. Virtual memory as naming
 - Virtual memory is just a naming scheme
 - Gives us hiding, controlled sharing, indirection

Next lectures: get rid of our initial assumptions (one CPU per
program, etc.)

