6.033 - Operating Systems + Virtual Memory
Lecture 3
Katrina LaCurts, lacurts@mit.edu

0. Previously
— Modularity reduces complexity
— Naming is necessary for modularity

1. Operating Systes

— Job: enforce modularity on a single machine

— Also: multiplexing, isolation, cooperation, portability,
performance,

— To enforce modularity on a single machine, need to:
— protect programs' memory from each other
— allow programs to communicate
- allow programs to share a single CPU

— Virtualization is how we do that

— Today: virtualize memory. assume one CPU per program and that
programs don't need to communicate.

2. Virtual memory

— Two components: main memory, CPU

- CPU holds instruction pointer (EIP)

— Naive method: two programs can just point to each other's memory
(bad)

— Another method: force programs to only use particular blocks of
memory by having them address only part of the space.

Complicated.

— Virtual memory addressing: let each program address the full

32-bit space. MMU translates virtual to physical addresses.

3. Page tables
— Idea 1: Store physical addresses, use virtual addresses as an
index into that table
— Problem: table is too big
— Solution: virtual address = page number + offset. MMU maps
virtual page numbers to physical page numbers. Keeps offset the
same.
- Page table entries contain other stuff. Among that stuff:
- Present bit
— This bit lets us know if a page resides in RAM or storage.
That's how the 0S deals with not actually having 2732 x
(number of programs) physical addresses in RAM: pages
can live
on disk when necessary.
- R/W bit
- U/S bit
— These bits let the 0S know when to trigger page faults

4. Hierarchical Page Tables



- "Normal" page tables (described above) still use a lot of space

Page tables have to be allocated all at once or not at all

Hierarchical page tables solve this by creating a hierarchy of

page tables and allocating each table only when it's needed.

— Virtual addresses get divided into multiple parts, one part per
level in the hierarchy + an offset.

Downside? Speed. Multiple lookups instead of one.

5. Kernel
— Virtualized memory doesn't protect the page table
— Kernel mode vs. user mode does this
— Switch between user and kernel modes via interrupts

6. Abstraction
- Some things can't be virtualized (disk, network, ..)
- 0S abstractions (system calls) make these things portable
— System calls are implemented as interrupts

7. Virtual memory as naming
- Virtual memory is just a naming scheme
— Gives us hiding, controlled sharing, indirection

Next lectures: get rid of our initial assumptions (one CPU per
program, etc.)



