
6.033 - Bounded Buffers + Concurrency + Locks
Lecture 4
Katrina LaCurts, lacurts@mit.edu

0. Previously
 - We're on a quest to enforce modularity on a single machine
 - Last time: virtualize memory to prevent programs from accessing
 each other's memory
 - This time: virtualize communication links to allow programs to
 communicate
 - Still assuming one program per CPU, and a correct kernel

1. Bounded Buffers
 - Allow programs to communicate
 - Another application of virtualization
 - Stores N messages, to deal with bursts
 - API: send(m), m <- receive()
 - Receivers and senders block if there are no messages (receiver) or
 no space (sender)
 - Concurrency causes problems in the implementation
 - Need to decide when it's okay to write, when it's okay to read,
 and where to write to/read from

2. Bounded buffers for single senders
 - send(bb, message):
 while True: # Wait until it's okay to write
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

 - receive(bb):
 while True: # Wait until it's okay to read
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

 - Can't swap the action and the increment; can cause reads of
 messages that don't exist

3. Bounded buffer for multiple senders
 - With two senders, different orders of executions will lead to
 unexpected output in the previous implementation (empty slots in
 the buffer, too few elements in the buffer)
 - Need locks

4. Locks
 - Allow only one CPU to be in a piece of code at a time
 - API: acquire(lock), release(lock)

 - *Not* acquire(variable I want to lock)
 - If two CPUs try to acquire the same lock at the same time, one
 will succeed and the other will block.

5. Bounded buffers with locks
 - Attempt 1 (using pseudocode): locks around every line
 - send(int x)
 {
 acquire(&lck);
 buf[in] = x;
 release(&lck);
 acquire(&lck);
 in = in + 1;
 release(&lck);
 }

 - Result: correct number of elements, but some slots have no
 messages (A and B write to same slot, and both increment)

 - Attempt 2:
 - send(int x)
 {
 acquire(&lck);
 buf[in] = x;
 in = in + 1;
 release(&lck);
 }
 - Correct: we want write and increment to be atomic (happen
 together)

 - Back to original code. Attempt 1:
 - send(bb, message):
 while True:
 if bb.in – bb.out < N:
 acquire(bb.send_lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.send_lock)
 return

 - No: concurrent senders will both think they can write, the first
 to acquire the lock might fill up the buffer (and so the second
 shouldn't write)

 - Attempt 2:
 - send(bb, message):
 acquire(bb.send_lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message

 bb.in <- bb.in + 1
 release(bb.send_lock)
 return
 - If the receiver is also trying to acquire send_lock, this
 attempt will prevent the receiver from ever receiving (so the
 sender will keep blocking when the buffer is full). If the
 receiver is using a different lock -- say receive_lock -- we
 will face issues with concurrently editing the same data
 structure.

 - Attempt 3 (correct):
 - send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out = N:
 release(bb.lock) // repeatedly release and acquire, to allow
 acquire(bb.lock) // processes calling receive() to jump in
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

6. Atomic actions
 - How to decide what should make up an atomic action?
 - too much code in locks: performance suffers
 - too little code in locks: unexpected behavior
 - Think of locks as protecting an invariant. Don't release the lock
 when the invariant is false.

7. Example: Locks for file systems

 - Filesystem move:
 - move(dir1, dir2, filename):
 unlink(dir1, filename)
 link(dir2, filename)

 - Coarse-grained locking:
 - move(dir1, dir2, filename):
 acquire(fs_lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(fs_lock)
 - Bad performance: can't move two different files between entirely
 different directories at the same time.

 - Fine-grained locking:
 - move(dir1, dir2, filename):
 acquire(dir1.lock)
 unlink(dir1, filename)
 release(dir1.lock)
 acquire(dir2.lock)

 link(dir2, filename)
 release(dir2.lock)
 - Better performance, but incorrect. What if dir2 is renamed
 between release and acquire?
 - Bad because CPU sees inconsistent state

 - Fine-grained locking + holding both locks
 - move(dir1, dir2, filename):
 acquire(dir1.lock)
 acquire(dir2.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)
 - Deadlock when A does move(M, N, file1.txt), B does move(N, M,
 file2.txt)

 - Fine-grained locking + solving deadlock
 - Heuristic: Look for all places where multiple locks are held,
 and ensure that locks are acquired in the same order
 - move(dir1, dir2, filename):
 if dir1.inum < dir2.inum:
 acquire(dir1.lock)
 acquire(dir2.lock)
 else:
 acquire(dir2.lock)
 acquire(dir1.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)
 - Painful: requires global reasoning about all locks

 - Answer? start coarse-grained and refine

8. Implementing locks
 - Attempt 1:
 - acquire(lock):
 while lock != 0:
 do nothing
 lock = 1
 - release(lock):
 lock = 0
 - Race condition: both see lock = 0, set lock = 1, and execute
 code
 - Problem: need locks to implement locks
 - Solution: hardware support (atomic instructions)
 - x86 example: XCHG
 - XCHG reg, addr
 temp <- mem[addr]

 mem[addr] <- reg
 reg <- temp
 - Now:
 - acquire(lock):
 do:
 r <= 1
 XCHG r, lock
 while r == 1
 - Atomic operations made possible by the controller that manages
 access to memory

