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0. Previously
   - We're on a quest to enforce modularity on a single machine
   - Last time: virtualize memory to prevent programs from accessing
     each other's memory
   - This time: virtualize communication links to allow programs to
     communicate
   - Still assuming one program per CPU, and a correct kernel

1. Bounded Buffers
  - Allow programs to communicate
  - Another application of virtualization
  - Stores N messages, to deal with bursts
  - API: send(m), m <- receive()
  - Receivers and senders block if there are no messages (receiver) or
    no space (sender)
  - Concurrency causes problems in the implementation
  - Need to decide when it's okay to write, when it's okay to read,
    and where to write to/read from

2. Bounded buffers for single senders
  - send(bb, message):
      while True: # Wait until it's okay to write
        if bb.in – bb.out < N:
          bb.buf[bb.in mod N] <- message
          bb.in <- bb.in + 1
          return

  - receive(bb):
      while True: # Wait until it's okay to read
        if bb.out < bb.in:
          message <- bb.buf[bb.out mod N]
          bb.out <- bb.out + 1
          return message

  - Can't swap the action and the increment; can cause reads of
    messages that don't exist

3. Bounded buffer for multiple senders
  - With two senders, different orders of executions will lead to
    unexpected output in the previous implementation (empty slots in
    the buffer, too few elements in the buffer)
  - Need locks

4. Locks
  - Allow only one CPU to be in a piece of code at a time
  - API: acquire(lock), release(lock)



    - *Not* acquire(variable I want to lock)
  - If two CPUs try to acquire the same lock at the same time, one
    will succeed and the other will block.

5. Bounded buffers with locks
  - Attempt 1 (using pseudocode): locks around every line
    - send(int x)
      {
        acquire(&lck);
        buf[in] = x;
        release(&lck);
        acquire(&lck);
        in = in + 1;
        release(&lck);
      }

    - Result: correct number of elements, but some slots have no
  messages (A and B write to same slot, and both increment)

  - Attempt 2:
    - send(int x)
      {
        acquire(&lck);
        buf[in] = x;
        in = in + 1;
        release(&lck);
      }
    - Correct: we want write and increment to be atomic (happen
      together)

  - Back to original code.  Attempt 1:
    - send(bb, message):
      while True:
        if bb.in – bb.out < N:
          acquire(bb.send_lock)
          bb.buf[bb.in mod N] <- message
          bb.in <- bb.in + 1
          release(bb.send_lock)
          return

    - No: concurrent senders will both think they can write, the first
      to acquire the lock might fill up the buffer (and so the second
      shouldn't write)

  - Attempt 2:
    - send(bb, message):
        acquire(bb.send_lock)
        while True:
          if bb.in – bb.out < N:
            bb.buf[bb.in mod N] <- message



            bb.in <- bb.in + 1
       release(bb.send_lock)
            return
    - If the receiver is also trying to acquire send_lock, this
      attempt will prevent the receiver from ever receiving (so the
      sender will keep blocking when the buffer is full).  If the
      receiver is using a different lock -- say receive_lock -- we
      will face issues with concurrently editing the same data
      structure.

  - Attempt 3 (correct):
    - send(bb, message):
        acquire(bb.lock)
        while bb.in - bb.out = N:
          release(bb.lock) // repeatedly release and acquire, to allow
          acquire(bb.lock) // processes calling receive() to jump in
        bb.buf[bb.in mod N] <- message
        bb.in <- bb.in + 1
        release(bb.lock)
        return

6. Atomic actions
  - How to decide what should make up an atomic action?
    - too much code in locks: performance suffers
    - too little code in locks: unexpected behavior
  - Think of locks as protecting an invariant.  Don't release the lock
    when the invariant is false.

7. Example: Locks for file systems

  - Filesystem move:
    - move(dir1, dir2, filename):
        unlink(dir1, filename)
        link(dir2, filename)

  - Coarse-grained locking:
    - move(dir1, dir2, filename):
        acquire(fs_lock)
        unlink(dir1, filename)
        link(dir2, filename)
        release(fs_lock)
    - Bad performance: can't move two different files between entirely
      different directories at the same time.

  - Fine-grained locking:
    - move(dir1, dir2, filename):
        acquire(dir1.lock)
        unlink(dir1, filename)
        release(dir1.lock)
        acquire(dir2.lock)



        link(dir2, filename)
        release(dir2.lock)
    - Better performance, but incorrect.  What if dir2 is renamed
      between release and acquire?
    - Bad because CPU sees inconsistent state

  - Fine-grained locking + holding both locks
    - move(dir1, dir2, filename):
        acquire(dir1.lock)
        acquire(dir2.lock)
        unlink(dir1, filename)
        link(dir2, filename)
        release(dir1.lock)
        release(dir2.lock)
    - Deadlock when A does move(M, N, file1.txt), B does move(N, M,
      file2.txt)

  - Fine-grained locking + solving deadlock
    - Heuristic: Look for all places where multiple locks are held,
      and ensure that locks are acquired in the same order
    - move(dir1, dir2, filename):
        if dir1.inum < dir2.inum:
          acquire(dir1.lock)
          acquire(dir2.lock)
        else:
          acquire(dir2.lock)
          acquire(dir1.lock)
        unlink(dir1, filename)
        link(dir2, filename)
        release(dir1.lock)
        release(dir2.lock)
    - Painful: requires global reasoning about all locks

  - Answer? start coarse-grained and refine

8. Implementing locks
  - Attempt 1:
    - acquire(lock):
        while lock != 0:
          do nothing
        lock = 1
    - release(lock):
        lock = 0
    - Race condition: both see lock = 0, set lock = 1, and execute
      code
  - Problem: need locks to implement locks
  - Solution: hardware support (atomic instructions)
  - x86 example: XCHG
    - XCHG reg, addr
        temp <- mem[addr]



        mem[addr] <- reg
        reg <- temp
  - Now:
    - acquire(lock):
        do:
          r <= 1
          XCHG r, lock
        while r == 1
  - Atomic operations made possible by the controller that manages
    access to memory


