6.033 - Bounded Buffers + Concurrency + Locks
Lecture 4
Katrina LaCurts, lacurts@mit.edu

0. Previously
- We're on a quest to enforce modularity on a single machine
— Last time: virtualize memory to prevent programs from accessing
each other's memory
— This time: virtualize communication links to allow programs to
communicate
- Still assuming one program per CPU, and a correct kernel

1. Bounded Buffers

— Allow programs to communicate

— Another application of virtualization

— Stores N messages, to deal with bursts

- API: send(m), m <- receive()

- Receivers and senders block if there are no messages (receiver) or
no space (sender)

— Concurrency causes problems in the implementation

— Need to decide when it's okay to write, when it's okay to read,
and where to write to/read from

2. Bounded buffers for single senders
- send(bb, message):
while True: # Wait until it's okay to write
if bb.in — bb.out < N:
bb.buf [bb.in mod N] <- message
bb.in <- bb.in + 1
return

- receive(bb):
while True: # Wait until it's okay to read
if bb.out < bb.in:
message <- bb.buf[bb.out mod N]
bb.out <- bb.out + 1
return message

— Can't swap the action and the increment; can cause reads of
messages that don't exist

3. Bounded buffer for multiple senders
- With two senders, different orders of executions will lead to
unexpected output in the previous implementation (empty slots in
the buffer, too few elements in the buffer)
— Need locks

4. Locks
— Allow only one CPU to be in a piece of code at a time
- API: acquire(lock), release(lock)



- xNotx acquire(variable I want to lock)

- If two CPUs try to acquire the same lock at the same time, one
will succeed and the other will block.

5. Bounded buffers with locks
- Attempt 1 (using pseudocode): locks around every line
- send(int x)
{
acquire(&lck);
buf[in] = x;
release(&lck);
acquire(&lck);
in = in + 1;
release(&lck);

}

— Result: correct number of elements, but some slots have no
messages (A and B write to same slot, and both increment)

- Attempt 2:
- send(int x)

{
acquire(&lck);
bufl[in] = x;
in = in + 1;
release(&lck);

}

- Correct: we want write and increment to be atomic (happen
together)

- Back to original code. Attempt 1:
- send(bb, message):
while True:
if bb.in — bb.out < N:

acquire(bb.send_lock)
bb.buf [bb.in mod N] <- message
bb.in <- bb.in + 1
release(bb.send_lock)
return

- No: concurrent senders will both think they can write, the first

to acquire the lock might fill up the buffer (and so the second
shouldn't write)

- Attempt 2:
- send(bb, message):
acquire(bb.send_lock)
while True:
if bb.in — bb.out < N:
bb.buf[bb.in mod N] <- message



bb.in <- bb.in + 1
release(bb.send_lock)
return
- If the receiver is also trying to acquire send_lock, this
attempt will prevent the receiver from ever receiving (so the
sender will keep blocking when the buffer is full). If the

receiver is using a different lock —— say receive_lock —— we
will face issues with concurrently editing the same data
structure.

- Attempt 3 (correct):
- send(bb, message):
acquire(bb. lock)
while bb.in - bb.out = N:
release(bb.lock) // repeatedly release and acquire, to allow
acquire(bb.lock) // processes calling receive() to jump in
bb.buf [bb.in mod N] <- message
bb.in <- bb.in + 1
release(bb. lock)
return

6. Atomic actions
— How to decide what should make up an atomic action?
— too much code in locks: performance suffers
— too little code in locks: unexpected behavior
— Think of locks as protecting an invariant. Don't release the lock
when the invariant is false.

7. Example: Locks for file systems

- Filesystem move:
- move(dirl, dir2, filename):
unlink(dirl, filename)
link(dir2, filename)

— Coarse-grained locking:

- move(dirl, dir2, filename):
acquire(fs_lock)
unlink(dirl, filename)
link(dir2, filename)
release(fs_lock)

- Bad performance: can't move two different files between entirely

different directories at the same time.

- Fine—-grained locking:

- move(dirl, dir2, filename):
acquire(diri. lock)
unlink(dirl, filename)
release(dirl. lock)
acquire(dir2.lock)



link(dir2, filename)
release(dir2. lock)
- Better performance, but incorrect. What if dir2 is renamed
between release and acquire?
— Bad because CPU sees inconsistent state

- Fine—-grained locking + holding both locks

- move(dirl, dir2, filename):
acquire(diri. lock)
acquire(dir2.lock)
unlink(dirl, filename)
link(dir2, filename)
release(dirl. lock)
release(dir2. lock)

- Deadlock when A does move(M, N, filel.txt), B does move(N, M,

file2.txt)

— Fine—-grained locking + solving deadlock
— Heuristic: Look for all places where multiple locks are held,
and ensure that locks are acquired in the same order
- move(dirl, dir2, filename):
if dirl.inum < dir2.inum:
acquire(dirl. lock)
acquire(dir2.lock)
else:
acquire(dir2.lock)
acquire(dirl. lock)
unlink(dirl, filename)
link(dir2, filename)
release(dirl. lock)
release(dir2. lock)
- Painful: requires global reasoning about all locks

— Answer? start coarse-grained and refine

8. Implementing locks
- Attempt 1:
- acquire(lock):
while lock != 0:
do nothing
lock =1
- release(lock):
lock = @
— Race condition: both see lock = 0, set lock = 1, and execute
code
— Problem: need locks to implement locks
- Solution: hardware support (atomic instructions)
- x86 example: XCHG
— XCHG reg, addr
temp <- meml[addr]



mem[addr] <- reg
reg <- temp
— Now:
- acquire(lock):
do:
r<=1
XCHG r, lock
while r == 1
— Atomic operations made possible by the controller that manages
access to memory



