
6.033 - Operating Systems: Threads
Lecture 5
Katrina LaCurts, lacurts@mit.edu

Students: this lecture involved looking at the details of a lot of
code. Please see the slides for those implementations (yield(),
wait(), yield_wait())

0. Intro
 - Today: get rid of assumption that we only have one program per
 CPU.
 - Sharing CPU is a problem because one program can block another

1. Threads
 - thread = virtual processor
 - API: suspend(), resume()
 - need to capture program's state: value of all registers, all of
 its memory
 - Big question: when to suspend/resume a thread?

2. yield()
 - command to tell kernel that thread is waiting for an event
 - implementation does three things: suspends running thread, chooses
 new thread to run, resumes new thread
 - data structures: threads table, CPUs table, t_lock
 - suspending current thread: save stack pointer and page-table
 register
 - choosing a new thread: round-robin fashion until we hit a
 RUNNABLE thread (perhaps the one that just called yield)
 - resuming new thread: reload state
 - all of this happens as an atomic action

3. Condition variables
 - allow kernel to notify threads instead of having threads
 constantly make checks
 - "lost notify" problem
 - T1 has lock on buffer, finds it full, releases lock
 - Prior to T1 calling wait, T2 acquires lock, reads message,
 notifies waiting threads that the buffer is not full
 - ..but T1 is not yet waiting; it was interrupted before it could
 call wait
 - solution: API is wait(cv, lock), not wait(cv).
 - when a thread calls wait, it goes to sleep and releases the lock
 - wait implementation
 - requires a different version of yield() -- yield_wait() -- to
 prevent deadlock
 - yield_wait() releases and re-acquires t_lock in the middle, and
 must point to a special stack to prevent stack corruption.

4. Preemption

 - If a thread never calls yield or wait, it's okay; special hardware
 will periodically generate an interrupt and forcibly call yield
 - ..But what if this interrupt occurs while the CPU is running
 yield()? Deadlock.
 - Solution: hardware mechanism to disable interrupts.

5. Reflection/Summary
 - we've enforced modularity on a single machine, assuming that the
 OS itself is indeed correct
 - locks and threads are interesting: we needed them to get bounded
 buffers to work, but they bring up modularity issues. We had to
 reason globally about locks.
 - to truly enforce modularity, we needed kernel and/or hardware
 support

