6.033 - Operating Systems: Threads
Lecture 5
Katrina LaCurts, lacurts@mit.edu

Students: this lecture involved looking at the details of a lot of
code. Please see the slides for those implementations (yield(),
wait(), yield_wait())

0. Intro
— Today: get rid of assumption that we only have one program per
CPU.
- Sharing CPU is a problem because one program can block another

1. Threads
— thread = virtual processor
- API: suspend(), resume()
- need to capture program's state: value of all registers, all of
its memory
- Big question: when to suspend/resume a thread?

2. yield()
— command to tell kernel that thread is waiting for an event
— implementation does three things: suspends running thread, chooses
new thread to run, resumes new thread
— data structures: threads table, CPUs table, t_lock
- suspending current thread: save stack pointer and page-table
register
— choosing a new thread: round-robin fashion until we hit a
RUNNABLE thread (perhaps the one that just called yield)
— resuming new thread: reload state
— all of this happens as an atomic action

3. Condition variables
— allow kernel to notify threads instead of having threads
constantly make checks
- "lost notify" problem
- T1 has lock on buffer, finds it full, releases lock
— Prior to T1 calling wait, T2 acquires lock, reads message,
notifies waiting threads that the buffer is not full
- ..but T1 is not yet waiting; it was interrupted before it could
call wait
- solution: API is wait(cv, lock), not wait(cv).
- when a thread calls wait, it goes to sleep and releases the lock
- wait implementation
- requires a different version of yield() —— yield_wait() —— to
prevent deadlock
- yield_wait() releases and re-acquires t_lock in the middle, and
must point to a special stack to prevent stack corruption.

4. Preemption



— If a thread never calls yield or wait, it's okay; special hardware
will periodically generate an interrupt and forcibly call yield

- ..But what if this interrupt occurs while the CPU is running
yield()? Deadlock.

— Solution: hardware mechanism to disable interrupts.

5. Reflection/Summary

- we've enforced modularity on a single machine, assuming that the
0S itself is indeed correct

— locks and threads are interesting: we needed them to get bounded
buffers to work, but they bring up modularity issues. We had to
reason globally about locks.

- to truly enforce modularity, we needed kernel and/or hardware
support



