
6.033 - Operating Systems: Structure
Lecture 6
Katrina LaCurts, lacurts@mit.edu

0. Intro
 - We've enforced modularity on a single machine. Saw virtual
 memory, system calls, bounded buffers, threads, etc.
 - New question: Can we rely on the kernel itself to work properly?

1. Monolithic kernels
 - The Linux kernel is, effectively, one large C program. Careful
 software engineering, but very little modularity within the kernel
 itself.
 - Bugs come about because of its complexity
 - Kernel bugs = entire system failure (recall the in-class demo)
 - Even worse: adversary can exploit these bugs

2. Microkernels: alternative to monolithic kernels
 - Put subsystems -- file servers, device drivers, etc. -- in user
 programs. More modular.
 - There will still be bugs but:
 - Fewer, because of decreased complexity
 - A single bug is less likely to crash the entire system
 - Why isn't Linux a microkernel, then?
 - High communication cost between modules
 - Not clear that moving programs to userspace is worth it
 - Hard to balance dependencies (e.g., sharing memory across
 modules)
 - Redesign is tough!
 - Spend a year of developer time rewriting the kernel or adding
 new features?
 - Microkernels can make it more difficult to change interfaces
 - Some parts of Linux do have microkernel design aspects

3. Virtual Machines
 - New problem: how to deal with kernel bugs without redesigning
 kernel from scratch?
 - Solution: run multiple instances of Linux on a single machine
 - Gives us fault isolation, customized OS for each program
 - Constraint: compatibility. Don't want to change existing kernel
 code.
 - We'll run multiple virtual machines (VMs) on a single CPU. Kernel
 equivalent is the "virtual machine monitor" (VMM)
 - Can run VMM as user-mode app inside host OS, or run VMM on
 hardware in kernel mode with guest OSes in user mode. We'll talk
 about second, but the issues are the same.
 - Role of VMM:
 - Allocate resources
 - Dispatch events
 - Deal with instructions from guest OS that require interaction

 with the physical hardware
 - Attempt 1: emulate every single instruction
 - Problen: Slow
 - Attempt 2: guest OSes run instructions directly on CPU
 - Problem: dealing with privileged instructions (can't run in
 kernel mode; then we'd be back to our original problem)
 - VMM will deal with handling privileged instructions

4. VMM Implementation
 - Trap and emulate
 - Guest OS in user mode
 - Privileged instructions cause an exception; VMM intercepts these
 and emulates
 - If VMM can't emulate, send exception back up to guest OS
 - Problems:
 - How to do the emulate
 - How to deal with instructions that don't trigger an interrupt
 but that the VMM still needs to intercept

5. Virtualizing memory
 - VMM needs to translate guest OS addresses into physical memory
 addresses. Three layers: guest virtual, guest physical, host

physical
 - Approach 1: Shadow pages
 - Guest OS loads PTR; causes interrupt. VMM intercepts
 - VMM locates guest OS's page table. Combines guest OS's table
 with its own table, constructing a third table mapping guest
 virtual to host physical
 - VMM loads host physical addr of this new page table into the
 hardware PTR
 - If guest OS modifies its page table, no interrupt thrown. To
 force an interrupt, VMM mark's guest OS's page table as
 read-only memory
 - Approach 2
 - Modern harware has support for virtualization
 - Physical hardware (effectively) knows about both levels of
 tables: will do lookup in the guest OS's page table and then the
 VMM's page table

6. Virtualizing U/K bit
 - Problem with basic trap-and-emulate: U/K bit involved in some
 instructions that don't cause exception (e.g., reading U/K bit,
 writing it to U)
 - Few solutions:
 - Para-virtualization: modify guest OS. Hard to do, and goes
 against our compatibility goal
 - Binary translation: VMM analyzes code from guest OS and replaces
 problematic instructions
 - Hardware support: some architectures have virtualization support
 built in. Have special VMM operating mode in addition to the

 U/K bit
 - Hardware support is arguably the best. Makes VMM's job easier.

7. Virtualizing disk:
 - Guest OS accesses disk by issuing special instructions. These are
 only accessible in K/VMM mode and raise an exception. VMM, again,
 traps and emulate.

8. Summary
 - Other cool things we do with VMs: run different OSes on a single
 machine, move VMs from one physical machine to another
 - Microkernels and VMs solve orthogonal problems
 - Microkernels: split up monolithic designs
 - VMs: let us run many instances of an existing OS. They are, in
 some sense, a partial solution to monolithic kernels (at least
 we can run these kernels safely). But their goal is to run
 multiple OSes on a single piece of hardware, not to target
 monolithic OSes specifically.
 - VMs most commonly implemented with hardware support (a special VMM
 mode in addition to U/K bit)

