6.033 - Operating Systems: Structure
Lecture 6
Katrina LaCurts, lacurts@mit.edu

0. Intro
- We've enforced modularity on a single machine. Saw virtual
memory, system calls, bounded buffers, threads, etc.
— New question: Can we rely on the kernel itself to work properly?

1. Monolithic kernels
— The Linux kernel is, effectively, one large C program. Careful
software engineering, but very little modularity within the kernel
itself.
- Bugs come about because of its complexity
- Kernel bugs = entire system failure (recall the in-class demo)
— Even worse: adversary can exploit these bugs

2. Microkernels: alternative to monolithic kernels
— Put subsystems —— file servers, device drivers, etc. —— in user
programs. More modular.
— There will still be bugs but:
- Fewer, because of decreased complexity
— A single bug is less likely to crash the entire system
— Why isn't Linux a microkernel, then?
— High communication cost between modules
— Not clear that moving programs to userspace is worth it
- Hard to balance dependencies (e.g., sharing memory across
modules)
— Redesign is tough!
— Spend a year of developer time rewriting the kernel or adding
new features?
— Microkernels can make it more difficult to change interfaces
- Some parts of Linux do have microkernel design aspects

3. Virtual Machines

— New problem: how to deal with kernel bugs without redesigning
kernel from scratch?

— Solution: run multiple instances of Linux on a single machine
- Gives us fault isolation, customized 0S for each program

— Constraint: compatibility. Don't want to change existing kernel
code.

- We'll run multiple virtual machines (VMs) on a single CPU. Kernel
equivalent is the "virtual machine monitor" (VMM)

— Can run VMM as user—-mode app inside host 0S, or run VMM on
hardware in kernel mode with guest 0Ses in user mode. We'll talk
about second, but the issues are the same.

- Role of VMM:

- Allocate resources
- Dispatch events
- Deal with instructions from guest 0S that require interaction



with the physical hardware
— Attempt 1: emulate every single instruction
- Problen: Slow
— Attempt 2: guest 0Ses run instructions directly on CPU
- Problem: dealing with privileged instructions (can't run in
kernel mode; then we'd be back to our original problem)
- VMM will deal with handling privileged instructions

4. VMM Implementation
— Trap and emulate
— Guest 0S in user mode
— Privileged instructions cause an exception; VMM intercepts these
and emulates
- If VMM can't emulate, send exception back up to guest 0S
— Problems:
- How to do the emulate
— How to deal with instructions that don't trigger an interrupt
but that the VMM still needs to intercept

5. Virtualizing memory
— VMM needs to translate guest 0S addresses into physical memory
addresses. Three layers: guest virtual, guest physical, host
physical
— Approach 1: Shadow pages
— Guest 0S loads PTR; causes interrupt. VMM intercepts
- VMM locates guest 0S's page table. Combines guest 0S's table
with its own table, constructing a third table mapping guest
virtual to host physical
— VMM loads host physical addr of this new page table into the
hardware PTR
— If guest 0S modifies its page table, no interrupt thrown. To
force an interrupt, VMM mark's guest 0S's page table as
read-only memory
— Approach 2
— Modern harware has support for virtualization
— Physical hardware (effectively) knows about both levels of
tables: will do lookup in the guest 0S's page table and then the
VMM's page table

6. Virtualizing U/K bit
— Problem with basic trap—-and-emulate: U/K bit involved in some
instructions that don't cause exception (e.g., reading U/K bit,
writing it to U)
- Few solutions:
- Para-virtualization: modify guest 0S. Hard to do, and goes
against our compatibility goal
- Binary translation: VMM analyzes code from guest 0S and replaces
problematic instructions
- Hardware support: some architectures have virtualization support
built in. Have special VMM operating mode in addition to the



U/K bit
- Hardware support is arguably the best. Makes VMM's job easier.

7. Virtualizing disk:
— Guest 0S accesses disk by issuing special instructions. These are
only accessible in K/VMM mode and raise an exception. VMM, again,

traps and emulate.

8. Summary
— Other cool things we do with VMs: run different 0Ses on a single
machine, move VMs from one physical machine to another
— Microkernels and VMs solve orthogonal problems
— Microkernels: split up monolithic designs
- VMs: let us run many instances of an existing 0S. They are, in
some sense, a partial solution to monolithic kernels (at least
we can run these kernels safely). But their goal is to run
multiple 0Ses on a single piece of hardware, not to target
monolithic 0Ses specifically.
- VMs most commonly implemented with hardware support (a special VMM
mode in addition to U/K bit)



