
6.033 - Operating Systems: Performance
Lecture 7
Katrina LaCurts, lacurts@mit.edu

0. Previously
 - Enforced modularity on a single machine via virtualization
 - Virtual memory, bounded buffers, threads
 - Saw monolithic vs. microkernels
 - Talked about VMs as a means to run multiple instances of an OS on
 a single machine with enforced modularity (bug in one OS won't
 crash the others)
 - Big thing to solve was how to implement the VMM. Solution: trap
 and emulate. How the emulation works depends on the situation.
 - Another key problem: how to trap instructions that don't
 generate interrupts.

1. What's left? Performance
 - Performance requirements significantly influence a system's design
 - Today: general techniques for improving performance

2. Technique 1: buy new hardware
 - Why? Moore's law => processing power doubles every 1.5 years,
 DRAM density increase over time, disk price (per GB) decreases,

...
 - But:
 - Not all aspects improve at the same pace
 - Moore's Law is plateauing
 - Hardware improvements don't always keep pace with load increases
 - Conclusion: need to design for performance, potentially re-design
 as load increases

3. General approach
 - Measure the system and find the bottleneck (the portion that
 limits performance)
 - Relax (improve) the bottleneck

4. Measurement
 - To measure, need metrics:
 - Throughput: number of requests over a unit of time
 - Latency: amount of time for a single request
 - Relationship between these changes depending on the context
 - As system becomes heavily-loaded:
 - Latency and throughput start low. Throughput increases as
 users enter, latency stays flat...
 - ..until system is at maximum throughput. Then throughput
 plateaus, latency increases
 - For heavily-loaded systems: focus on improving throughput
 - Need to compare measured throughput to possible throughput:
 utilization
 - Utilization sometimes makes bottleneck obvious (CPU is 100%

 utilized vs. disk is 20% utilized), sometimes not (CPU and disk
 are 50% utilized, and at alternating times)
 - Helpful to have a model in place: what do we expect from each
 component?
 - When bottleneck is not obvious, use measurements to locate
 candidates for bottlenecks, fix them, see what happens (iterate)

4. How to relax the bottleneck
 - Better algorithms, etc. These are application-specific. 6.033
 focuses on generally-applicable techniques
 - Batching, caching, concurrency, scheduling
 - Examples of these techniques follow. The examples related to
 operating systems (that's what you know), but techniques apply to
 all systems

5. Disk throughput
 - (HDDs, not SDDs -- those are coming later)
 - How does a disk work?
 - Several platters on a rotating axle
 - Platters have circular tracks on either side, divided into
 sectors.
 - Cylinder: group of aligned tracks
 - Disk arm has one head for each surface, all move together
 - Each disk head reads/writes sectors as they rotate past. Size
 of a sector = unit of read/write operation (typically 512B)
 - To read/write:
 - Seek arm to desired track
 - Wait for platter to rotate the desired sector under the head
 - Read/write as the platter rotates
 - How long does R/W take?
 - Example disk specs:
 - Capacity: 400GB
 - # platters: 5
 - # heads: 10
 - # sectors per track: 567-1170 (inner to outer)
 - # bytes per sector: 512
 - Rotational speed: 7200 RPM => 8.3ms per revolution
 - Seek time: Avg read seek 8.2ms, avg write seek 9.2ms
 - Given as part of disk specs
 - Rotation time: 0-8.3ms
 - Platters only rotate in one direction
 - R/W as platter rotates: 35-62MB/sec
 - Also given in disk specs
 - So reading random 4KB block: 8.2ms + 4.1ms + ~.1ms = 12.4
 - 4096 B / 12.4 ms = 322KB/s
 => 99% of the time is spent moving the disk
 - Can we do better?
 - Use flash? We'll get to that
 - Batch individual transfers?
 - .8ms to seek to next track + 8.3ms to read entire track =

 9.1ms
 - .8ms is single-track seek time for our disk (again, from
 specs)
 - 1 track contains ~1000sectors * 512B = 512KB
 - throughput: 512KB/9.1ms = 55MB/s
 - Lesson: avoid random access. Try to do long sequential reads.
 - But how?
 - If your system reads/writes entire big files, lay them out
 contiguously on disk. Hard to achieve in practice!
 - If your system reads lots of small pieces of data, group them

6. Caching
 - Already saw in DNS. Common performance-enhancement for systems
 - How do we measure how well it works?
 - Average access time: hit_time * hit_rate + miss_time * miss_rate
 - Want high hit rate. How do we know what to put in the cache?
 - Can't keep everything
 - So really: how do we know what to *evict* from the cache?
 - Popular eviction policy: least-recently used
 - Evict data that was used the least recently
 - Works well for popular data
 - Bad for sequential access (think: sequentially accessing a
dataset
 that is larger than the cache)
 - Caching is good when
 - All data fits in the cache
 - There is locality, temporal or spatial
 - Caching is bad for
 - Writes (writes have to go to cache and disk; cache needs to be
 consistent, but disk is non-volatile)
 - Moral: to build a good cache, need to understand access patterns
 - Like disk performance: to relax disk as bottleneck, needed to
 understand details of how it works

7. Concurrency/scheduling
 - Suppose server alternates between CPU and disk:
 CPU: --A-- --B-- --C--
 Disk: --A-- --B-- --C--
 - Apply concurrency, can get:
 CPU: --A----B----C-- ...
 Disk: --A----B-- ..
 - This is a scheduling problem: different orders of execution can
 lead to different performance
 - Example:
 - 5 concurrent threads issue concurrent reads to sectors 71, 10,
 92, 45, and 29.
 - Naive algorithm: seek to each sector in turn
 - Better algorithm: sort by track and perform reads in order.
 Gets even higher throughput as load increases
 - Drawback: it's unfair

 - No one right answer to scheduling. Tradeoff between performance
 and fairness.

8. Parallelism
 - Goal: have multiple disks, want to access them in parallel
 - Problem: how do we divide data across the disks?
 - Depends on bottleneck
 - Case 1: many requests for many small files. Limited by disk
 seeks. Put each file on a single disk, and allow multiple disks
 to seek multiple records in parallel
 - Case 2: few large reads. Limited by sequential throughput.
 Stripe files across disks.
 - Another case: parallelism across many computers
 - Problem: how do we deal with machine failures?
 - (One) Solution: go to recitation tomorrow!

9. Alternative Technologies
 - Talked a lot about HDDs. Why not use solid-state disks (SSDs)?
 - SSD: (typically) flash memory that exports a disk interface
 - Flash memory = no moving parts
 - Is it better? Some specs:
 - Sequential read: 400 MB/sec.
 - Sequential write: 200-300 MB/sec.
 - Random 4K reads: 5700/sec (23MB/s)
 - Random 4K writes: 2200/sec (9MB/s)
 - Conclusions:
 - Sequential access still much faster than random access.
 - Write performance is noticeably worse
 - Flash can only erase large units at a time. writing a small
 block = read large block, modify it, write it back
 - Modern SSDs have complex controllers that try to optimize this
 - SSDs are also more expensive
 - Many performance issues are the same
 - HDDs and SSDs are slower than RAM
 - Can still avoid small writes with batching
 - Lesson: even as technology improves, our performance techniques
 still apply. Understanding the details of your system (e.g., how
 the storage media works) is crucial.

10. Summary
 - We can't magically apply any of the previous techniques. Have to
 understand what goes on underneath.
 - Batching: how disk access works
 - Caching: what is the access pattern
 - Scheduling/concurrency: how disk access works, how system is
 being used (the workload)
 - Parallelism: what is the workload

11. Useful numbers for your day-to-day-lives:
 - Latency:

 - 0.00000001ms: instruction time (1 ns)
 - 0.0001ms: DRAM load (100 ns)
 - 0.1ms: LAN network
 - 10ms: random disk I/O
 - 25-50ms: Internet east -> west coast
 - Throughput:
 - 10,000 MB/s: DRAM
 - 1,000 MB/s: LAN (or100 MB/s)
 - 100 MB/s: sequential disk (or 500 MB/s)
 - 1 MB/s: random disk I/O

