6.033 - Operating Systems: Performance
Lecture 7
Katrina LaCurts, lacurts@mit.edu

0. Previously
- Enforced modularity on a single machine via virtualization
— Virtual memory, bounded buffers, threads
— Saw monolithic vs. microkernels
— Talked about VMs as a means to run multiple instances of an 0S on
a single machine with enforced modularity (bug in one 0S won't
crash the others)
- Big thing to solve was how to implement the VMM. Solution: trap
and emulate. How the emulation works depends on the situation.
— Another key problem: how to trap instructions that don't
generate interrupts.

1. What's left? Performance
- Performance requirements significantly influence a system's design
— Today: general techniques for improving performance

2. Technique 1: buy new hardware
— Why? Moore's law => processing power doubles every 1.5 years,
DRAM density increase over time, disk price (per GB) decreases,

- But:
— Not all aspects improve at the same pace
— Moore's Law is plateauing
— Hardware improvements don't always keep pace with load increases
— Conclusion: need to design for performance, potentially re-design
as load increases

3. General approach
- Measure the system and find the bottleneck (the portion that
limits performance)
- Relax (improve) the bottleneck

4. Measurement
— To measure, need metrics:

Throughput: number of requests over a unit of time

Latency: amount of time for a single request

Relationship between these changes depending on the context

As system becomes heavily-loaded:

- Latency and throughput start low. Throughput increases as
users enter, latency stays flat...

— ..until system is at maximum throughput. Then throughput
plateaus, latency increases
- For heavily-loaded systems: focus on improving throughput

- Need to compare measured throughput to possible throughput:
utilization

- Utilization sometimes makes bottleneck obvious (CPU is 100%

utilized vs. disk is 20% utilized), sometimes not (CPU and disk
are 50% utilized, and at alternating times)

— Helpful to have a model in place: what do we expect from each
component?

— When bottleneck is not obvious, use measurements to locate
candidates for bottlenecks, fix them, see what happens (iterate)

4. How to relax the bottleneck

— Better algorithms, etc. These are application-specific. 6.033
focuses on generally-applicable techniques
- Batching, caching, concurrency, scheduling
- Examples of these techniques follow. The examples related to
operating systems (that's what you know), but techniques apply to
all systems

5. Disk throughput
- (HDDs, not SDDs -- those are coming later)
How does a disk work?

Several platters on a rotating axle

Platters have circular tracks on either side, divided into
sectors.

— Cylinder: group of aligned tracks

Disk arm has one head for each surface, all move together

Each disk head reads/writes sectors as they rotate past. Size
of a sector = unit of read/write operation (typically 512B)

To read/write:

— Seek arm to desired track

— Wait for platter to rotate the desired sector under the head
— Read/write as the platter rotates

How long does R/W take?

Example disk specs:

Capacity: 400GB

platters: 5

heads: 10

sectors per track: 567-1170 (inner to outer)

bytes per sector: 512

Rotational speed: 7200 RPM => 8.3ms per revolution
Seek time: Avg read seek 8.2ms, avg write seek 9.2ms
— Given as part of disk specs

Rotation time: ©-8.3ms

- Platters only rotate in one direction

R/W as platter rotates: 35-62MB/sec

- Also given in disk specs

So reading random 4KB block: 8.2ms + 4.1ms + ~.1ms = 12.4
4096 B / 12.4 ms = 322KB/s

=> 99% of the time is spent moving the disk
Can we do better?

Use flash? We'll get to that
Batch individual transfers?
- .8ms to seek to next track + 8.3ms to read entire track =

9.1ms
- .8ms is single-track seek time for our disk (again, from
specs)
- 1 track contains ~1000sectors x 512B = 512KB
- throughput: 512KB/9.1ms = 55MB/s
— Lesson: avoid random access. Try to do long sequential reads.
- But how?
- If your system reads/writes entire big files, lay them out
contiguously on disk. Hard to achieve in practice!
- If your system reads lots of small pieces of data, group them

6. Caching
— Already saw in DNS. Common performance—enhancement for systems
— How do we measure how well it works?
— Average access time: hit_time *x hit_rate + miss_time *x miss_rate
- Want high hit rate. How do we know what to put in the cache?
— Can't keep everything
- So really: how do we know what to *evictx from the cache?
— Popular eviction policy: least-recently used
— Evict data that was used the least recently
— Works well for popular data
- Bad for sequential access (think: sequentially accessing a
dataset
that is larger than the cache)
— Caching is good when
- All data fits in the cache
— There is locality, temporal or spatial
— Caching 1is bad for
- Writes (writes have to go to cache and disk; cache needs to be
consistent, but disk is non-volatile)
— Moral: to build a good cache, need to understand access patterns
— Like disk performance: to relax disk as bottleneck, needed to
understand details of how it works

7. Concurrency/scheduling
— Suppose server alternates between CPU and disk:

CPU: —A— —B— —C—

Disk: —A— —B— —C—
- Apply concurrency, can get:

cpPU: —-A—B—C— ...

Disk: —A—B— ..

— This is a scheduling problem: different orders of execution can
lead to different performance
- Example:
- 5 concurrent threads issue concurrent reads to sectors 71, 10,
92, 45, and 29.
— Naive algorithm: seek to each sector in turn
— Better algorithm: sort by track and perform reads in order.
Gets even higher throughput as load increases
— Drawback: it's unfair

- No one right answer to scheduling. Tradeoff between performance

and fairness.

8. Parallelism

— Goal: have multiple disks, want to access them in parallel
— Problem: how do we divide data across the disks?
— Depends on bottleneck

— Case 1: many requests for many small files. Limited by disk
seeks. Put each file on a single disk, and allow multiple disks
to seek multiple records in parallel

- Case 2: few large reads. Limited by sequential throughput.
Stripe files across disks.

— Another case: parallelism across many computers

— Problem: how do we deal with machine failures?
- (One) Solution: go to recitation tomorrow!

9. Alternative Technologies

10.

11.

- Talked a lot about HDDs. Why not use solid-state disks (SSDs)?

- SSD: (typically) flash memory that exports a disk interface
Flash memory = no moving parts
Is it better? Some specs:
- Sequential read: 400 MB/sec.
- Sequential write: 200-300 MB/sec.
- Random 4K reads: 5700/sec (23MB/s)
- Random 4K writes: 2200/sec (9MB/s)
Conclusions:
— Sequential access still much faster than random access.
— Write performance is noticeably worse
— Flash can only erase large units at a time. writing a small
block = read large block, modify it, write it back
— Modern SSDs have complex controllers that try to optimize this
SSDs are also more expensive
Many performance issues are the same
— HDDs and SSDs are slower than RAM
— Can still avoid small writes with batching
Lesson: even as technology improves, our performance techniques
still apply. Understanding the details of your system (e.g., how
the storage media works) is crucial.

Summary

We can't magically apply any of the previous techniques. Have to

understand what goes on underneath.

- Batching: how disk access works

- Caching: what is the access pattern

— Scheduling/concurrency: how disk access works, how system is
being used (the workload)

— Parallelism: what is the workload

Useful numbers for your day-to-day-lives:
Latency:

0.00000001ms: instruction time (1 ns)
0.0001ms: DRAM load (100 ns)

0.1ms: LAN network

10ms: random disk I/O0

— 25-50ms: Internet east —> west coast
Throughput:

- 10,000 MB/s: DRAM

- 1,000 MB/s: LAN (orl1e@ MB/s)

- 100 MB/s: sequential disk (or 500 MB/s)
- 1 MB/s: random disk I/O

