6.02 -

Network: Reliable Transport and Congestion Control

Lecture #10
Katrina LaCurts, lacurts@mit.edu

0. Int
- La

- Th
ap

1. TCP
- Go

- Br
th

- To

- Ne
th

2. Rel
- Go

roduction

st week: how to route scalably in the face of policy and economy
is week: how to transport scalably in the face of diverse
plication demands

als: provide reliable transport, prevent congestion

oader questions: how do we do this scalably, and how do we share
e network efficiently and fairly?

day: TCP Congestion Control

In particular, a version of TCP known as "New Reno"

xt lecture: An alternative approach to "resource management" on
e Internet

iable Transport via sliding-window protocol
al: receiving application gets a complete, in-order bytestream

from the sender. One copy of every packet, in order.

- Wh
ca
- Ba

y do we need it? Network is unreliable. Packets get dropped,

n arrive out-of-order.

sics:

Every data packet gets a sequence number (1, 2, 3, ...)

Sender has W outstanding packets at any given time. W = window

size

When receive gets a packet, it sends an ACK back. ACKs are

cumulative: An ACK for X indicates "I have received all packets

up to and including X."

If sender doesn't receive an ACK indicating that packet X has

been received, after some amount of time it will "timeout" and

retransmit X.

- Maybe X was lost, its ACK was lost, or its ACK is delayed

- The timeout = proportional to (but a bit larger than) the RTT
of the path between sender and receiver

At receiver: keep buffer to avoid delivering out-of-order

packets, keep track of last-packet-delivered to avoid delivering

duplicates.

3. Main motivation
- What's the "right" value for W?
- In particular, what if there are multiple senders?

Ex:

s1 —- 2 Mb/s - A -——— 2 Mb/s ——— B — 2 Mb/s —— D1
I |

S2 —— 2 Mb/s ——- —— 2 Mb/s —— D2

What should happen? Debatable. Reasonable alternative:

S1 —- 1 Mb/s - A —— 2 Mb/s ———= B —— 1 Mb/s —— D1

| |
S2 —— 1 Mb/s ——- — 1 Mb/s — D2

— How do S1 and S2 figure this out? What happens if S3 arrives?
Or if S1 starts sending less? Etc.

5. Congestion Control: controlling the source rate to achieve high
performance
— Goals: Efficiency and fairness
— Minimize drops, minimize delay, maximize utilization
— Share bandwidth fairly among all connections that are using it
— FOR NOW: assume all senders have infinite offered load. Fairness
= splitting bandwidth equally amongst them.
— But no senders knows how many other senders there are, and that
number can change over time.
- We'll use window-based congestion control. Switches are dumb
(can only drop packets); senders are smart

6. AIMD

— Need a signal for congestion in the network, so senders can react

to it.
— Our signal: packet drops
— Every RTT:
— If there is no loss, W = W+1
— If there is loss, W = W/2
- This is "Additive Increase Multiplicative Decrease" (AIMD)
— Senders constantly readjust => adapt to a changing number of
senders, or changing offered loads
- Window size exhibits sawtooth behavior (see slides)
- Why AIMD?
- It's "safe": senders are conservative about increasing, but
scale back dramatically in the face of congestion
- Efficient and fair

7. Finite Offered Load

Remove the assumption that everyone has infinite offered load
Suppose S1 and S2 have offered load of 1Mb/s, S3 has offered load
of .5Mb/s, and they all share a bottleneck with capacity 2Mb/s
What happens?

— In theory: S3 stops increase once it's sending .5Mb/s. S1 and
S2 continue increasing until they reach .75Mb/s

Is this fair?

— In some sense. It achieves a type of fairness known as '"max-min
fairness". But there are other definitions (e.g., "proportional
fairness")

What happens in practice?

- We might get max-min fairness, or one of the senders might
experience a much longer RTT and so not increase its window at

the same rate.
— So: TCP's congestion control utilizes the network reasonably well,
but it's hard to measure fairness, or claim that fairness is
achieved under skewed workloads, varying RTTs, etc.

8. Additional Mechanisms
- Slow Start
- At the beginning of the connection, exponential increase the
window (double it every RTT until you see 1loss)
— Decreases the time it takes for the initial window to "ramp up"
- (See slide for diagram)
— Fast Retransmit/Fast Recovery
— When a sender receives an ACK with sequence number X, and then
three duplicates of that packet, it immediately retransmits
packet X+1 (remember: ACKs are cumulative)
Ex: Send 123456
Receive 1 2 222
Sender receives 4 ACKs total with sequence number "2";
infers that packet 3 is lost, immediately retransmits
— On fast-retransmit, window decrease is as before: W = W/2
- In fact, when a packet is lost due to timeout, TCP behaves
differently: W = 1, then do slow-start until the last good
window, and then start additive increase.
- (See slide for diagram)
— Reasoning: if there is a retransmission due to timeout, then
there is significant loss in the network, and senders should
back *xwayx off.

9. Reflection

— TCP has been a massive success, requires no changes to the
Internet's infrastructure, is something endpoints can opt-in to,
allows the network to be shared among tons of different users, all
with different -- and changing -- types of traffic, in a
distributed manner.

— BUT: TCP doesn't react to congestion until it's already
happening. 1Is there something better we could do?

