
6.033: Networking - In-network Resource Management
Lecture 11
Katrina LaCurts, lacurts@mit.edu

0. Introduction
 - Last time: TCP CC. Massive success. Doesn't require us to change
 the network, is something machines can opt-in to (don't have to
 have reliable transport if you don't need it), lets us prevent
 congestion in a distributed manner.
 - But:
 - Can result in long delays when routers have too much buffering
 (Bufferbloat)
 - Doesn't work well in some scenarios (DCTCP)
 - Most important for today: doesn't react to congestion until
 queues are full.
 - Full queues = long delay
 - Queues = necessary to absorb bursts
 - Goal: Transient queues, not persistent queues
 - Idea: drop packets *before* the queues are full. TCP senders will
 back off before congestion is too bad.

1. DropTail
 - The original queue management scheme. When a packet arrives, if
 the queue is full, drop it; else, enqueue it.
 - Simple (+)
 - Only drops packets when it needs to (+/-)
 - Remember: dropped packet => retransmission, which wastes
 resources
 - Synchronizes sources (-)

 Consider the following scenario, where one source sends a
 burst of traffic: x x x x [|x|x|x|x]

 Queue will drop three packets at the tail of the burst. TCP
 sender will (likely) timeout, drop its window to 1.

 If multiple senders do this: all sources bursts, packets
 dropped from all, all sources throttle back (reduces
 utilization), sources increase, cycle repeats.

 Flow synchronization = decreased utilization

 - Not very fair (-)
 - Tends to result in mostly-full queues (-)
 - Bad for bursty traffic (-)

2. RED
 - Active queue management scheme
 - Idea: drop packets before the queue is full to give senders an
 early signal

 - Requires a measure of the average queue size, q_avg.
 q_avg = a*q_instant + (1-a)*q_avg ; 0 < a << 1
 - Drop packets with probability p. What is p?
 q_avg <= min_q; p = 0
 min_q < q_avg <= max_q; p increases linearly
 q_avg > max_q; p = 1

 (see slides for diagram)
 - Results:
 - Queue length doesn't oscillate as much (+)
 - Because q_avg is a low-pass filter, and because of the next
 point
 - Smooth change in drop rate with congestion (+)
 - As q_avg increases, so does p. Keeps q_avg stable
 - Flows are desynchronized (+)
 - Spreads the drops out
 - But, it still drops packets (-)

3. ECN
 - RED, but "mark" packets instead of dropping them
 - "Mark" = set a bit in the header to 1. Sources learn about
 congestion via marked ACKs
 - Seems great! But sources have to know to do this. They already
 know to react to packet drops, but not to marks.

4. RED/ECN vs. DropTail
 - Advantages of RED/ECN
 - Smaller persistent queues => smaller delays
 - Less dramatic queue oscillation
 - Less biased against bursty traffic (in theory)
 - Disadvantages
 - More complex
 - Hard to pick parameters (q_min, q_max, etc.)
 - "Right" parameters depend on number of flows, bottleneck, etc.
 - Bad parameters make things worse
 - Neither RED nor ECN are the final word on active queue management

5. Traffic Differentiation
 - As long as we're changing the switches themselves, why stop at
 queue management?
 - Idea of traffic differentiation: put different types of traffic in
 different queues, and do something fancy with the queues.

6. Delay-based scheduling
 - Suppose we want to prioritize latency-sensitive traffic. Say,
 xbox live traffic (latency-sensitive) over email (not)
 - Solution: priority queueing
 - Two queues: xbox queue, email queue. Serve xbox queue if it has
 a packet. If not, serve email queue.
 - (Can extend this idea to more than two queues)

 - "What queue to send a packet from" is the problem of scheduling.
 That's different from queue management: "When to drop/mark packets
 in a single queue"
 - Lingering problem: a lot of xbox traffic => starving out the email
 traffic. We'll come back to that.

7. Bandwidth-based scheduling
 - What if we, instead, want to allocate a certain amount of
 bandwidth to each queue?

8. Round-robin

 (Note: in class, all of my examples used Skype/Spotify and Dropbox.
 Below you have the same examples, just with different apps.)

 - First case: want xbox and email traffic to each get 50% of
 bandwidth
 - Solution: round-robin scheduler
 - Take a packet from the xbox queue, then the email queue, then
 the xbox queue, then the email queue, ...
 - But, what if packet sizes are different:

 xbox: [10 | 10 | 10 | 10]
 email: [100 | 100 | 100 | 100]

 With this scheme we'll send 10 bytes of xbox traffic for every
 100 bytes of email traffic. Not what we want!
 - => Can't handle variable packet sizes (-)
 - Also, in its purest form, RR doesn't allow us to weight traffic
 differently (e.g., 66% xbox 33% email instead of a 50/50 split)

9. Weighted RR
 - Take the weights, but factor packet size in as well.
 - Algorithm:

 in each round:
 for each queue q:
 q.norm = q.weight / q.mean_packet_size
 min = min of q.norm’s over all flows
 for each queue q:
 q.n_packets = q.norm / min
 send q.n_packets from queue q

 - Example 1:

 xbox: [10 | 10 | 10 | 10]
 email: [100 | 100 | 100 | 100]

 xbox.weight = 2/3 email.weight = 1/3 <-- normalize
 weights

 xbox.mean = 10 email.mean = 100 <-- mean packet size
 xbox.norm = 2/3/10 email.norm = 1/3/100
 = 1/15 = 1/300

 min norm = 1/300

 xbox.packets = 1/15/(1/300) email.packets = 1/300/(1/300)
 = 20 = 1

 So we send 20 packets = 20*10 bytes = 200 bytes of xbox traffic
 for every 1 packet = 1*100 bytes = 100 byets of email traffic.

 - Example 2:

 xbox: [5 | 5 | 10 | 10]
 email: [1 | 1 | 1 | 1]

 xbox.weight = 2/3 email.weight = 1/3
 xbox.mean = 7.5 email.mean = 1
 xbox.norm = 4/45 email.norm = 1/3

 min norm = 4/45

 xbox.packets = 1 email.packets = 3-4

 So for every 3-4 bytes of email, we'll send 5-10 bytes of xbox.
 Not quite what we want..

 - Also: how do we calculate mean packet size? Over last n packets?
 Over all packets ever?

10. Deficit round-robin
 - Queues accumulate "credit" which specifies how many bytes they're
 allowed to send in the next round. Credit carries over to handle
 larger packet sizes.
 - Algorithm:

 in each round:
 for each queue q:
 q.credit += q.quantum
 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p

 - Example 1:

 xbox: [10 | 10 | 5 | 5 | 10 | 10]
 email: [10 | 10 | 10 | 10 | 10 | 10]

 xbox.Quantum = 20 <-- note: 20;10 not 2/3;1/3 (see below)

 email.Quantum = 10
 xbox.credit = 0
 email.credit = 0

 round 1:
 xbox.credit += xbox.Quantum = 20
 while xbox.credit > next packet size:
 send next packet
 decrement packet size from credit
 => we'll send 2 xbox packets, and xbox.credit = 0
 xbox queue is now: [10 | 10 | 5 | 5]

 email.credit += email.Quantum = 10
 => we'll send just the first packet, and email.credit = 0
 email queue is now [10 | 10 | 10 | 10 | 10]

 round 2:
 xbox.credit += 20 = 20
 => have enough credit to send the next three packets
 xbox.credit = 0
 xbox.queue = [10]

 email.credit += 10
 => have enough credit to send next packet
 email.credit = 0
 email.queue = [10 | 10 | 10 | 10]

 So we sent 20 bytes for every 10 bytes of email, even with
 variable packet sizes within the queue.

 - Quantums are larger because they reflect a packet size
 - Small quantums: go through a lot of rounds before sending a
 packet
 - Large quantums: potentially send a lot of packets from one queue
 before moving onto the next

 - Example 2:

 xbox = [20 | 750 | 200] xbox.Quantum = 500
 email = [500 | 500] email.Quantum = 500

 round 1:

 xbox.credit = 500
 can send first packet; xbox.credit = 300
 cannot send next packet

 email.credit = 500
 can send first packet; email.credit = 0

 round 2:

 xbox.credit = 300 + 500 = 800 <-- credit carries over!
 can send first packet; xbox.credit = 50
 can send second packet; xbox.credit = 30

 email.credit = 500
 can send first packet; email.credit = 0

 - Credit carrying over helps deal with variable (and large) packet
 sizes)
 - Pros of DRR:
 - Don't need mean packet size
 - Give near-perfect fairness (we won't prove this)
 - O(1) packet processing
 - In fact: schemes that increase fairness also increase packet
 processing.

11. Discussion
 - Traffic differentiation: a good idea? In theory, sure. But:
 - Hard to decide what granularity of isolation makes sense
 (per-app? per-flow?)
 - per-app also requires deep packet inspection. Expensive and
 thwarted by encryption.
 - per-flow = lots of state.
 - For fair queueing:
 - Schemes (except deficit RR) are expensive
 - Have to change switches
 - How to you choose which traffic gets priority? And who should
 make that decision?
 - For priority queueing:
 - Unclear how multiple methods of priority queueing would
 interact across the Internet
 - *Should* we allow traffic to be prioritized at all?
 - Depressing conclusion: there's enough bandwidth that usually a
 single FIFO queue works fine :/
 - Queue-management: a good idea? Again, in theory, yes.
 - In fact, RED/ECN -- or their ideas -- are used in some
 environments (DCTCP)..
 - ..But not on the entire Internet
 - Hard to set parameters
 - Hard to figure out interactions between schemes
 - Have to change switches
 - In-network resource-management: a good idea?
 - Should we do any of this? Who should make these decisions?
 Should the network "help" the endpoints, possibly providing
 better performance, but also possibly providing unnecessary
 functionality?

