6.033: Networking - In-network Resource Management
Lecture 11
Katrina LaCurts, lacurts@mit.edu

0. Introduction
— Last time: TCP CC. Massive success. Doesn't require us to change
the network, is something machines can opt-in to (don't have to
have reliable transport if you don't need it), lets us prevent
congestion in a distributed manner.
— But:
— Can result in long delays when routers have too much buffering
(Bufferbloat)
- Doesn't work well in some scenarios (DCTCP)
— Most important for today: doesn't react to congestion until
queues are full.
— Full queues = long delay
— Queues = necessary to absorb bursts
- Goal: Transient queues, not persistent queues
— Idea: drop packets xbeforex the queues are full. TCP senders will
back off before congestion is too bad.

1. DropTail

— The original queue management scheme. When a packet arrives, if
the queue is full, drop it; else, enqueue it.

- Simple (+)

- Only drops packets when it needs to (+/-)
— Remember: dropped packet => retransmission, which wastes

resources
- Synchronizes sources (-)

Consider the following scenario, where one source sends a
burst of traffic: x x x x [|x]|x|x]|x]

Queue will drop three packets at the tail of the burst. TCP
sender will (likely) timeout, drop its window to 1.

If multiple senders do this: all sources bursts, packets
dropped from all, all sources throttle back (reduces
utilization), sources increase, cycle repeats.

Flow synchronization = decreased utilization

- Not very fair (-)
- Tends to result in mostly-full queues (-)
- Bad for bursty traffic (-)

2. RED
— Active queue management scheme
— Idea: drop packets before the queue is full to give senders an
early signal

Requires a measure of the average queue size, q_avg.
g_avg = axqg_instant + (1l-a)*g_avg ; 0 < a << 1
Drop packets with probability p. What is p?
g_avg <= min_q; p = 0
min_qg < g_avg <= max_q; p increases linearly
g_avg > max_q; p =1

(see slides for diagram)
Results:
- Queue length doesn't oscillate as much (+)
- Because g_avg is a low-pass filter, and because of the next
point
- Smooth change in drop rate with congestion (+)
- As g_avg increases, so does p. Keeps q_avg stable
- Flows are desynchronized (+)
— Spreads the drops out
- But, it still drops packets (-)

3. ECN
- RED, but "mark" packets instead of dropping them
- "Mark" = set a bit in the header to 1. Sources learn about
congestion via marked ACKs
— Seems great! But sources have to know to do this. They already
know to react to packet drops, but not to marks.

4. RED/ECN vs. DropTail
- Advantages of RED/ECN
— Smaller persistent queues => smaller delays
— Less dramatic queue oscillation
- Less biased against bursty traffic (in theory)
- Disadvantages
— More complex
- Hard to pick parameters (qg_min, g_max, etc.)
- "Right" parameters depend on number of flows, bottleneck, etc.
— Bad parameters make things worse
— Neither RED nor ECN are the final word on active queue management

5. Traffic Differentiation
- As long as we're changing the switches themselves, why stop at
gqueue management?
— Idea of traffic differentiation: put different types of traffic in
different queues, and do something fancy with the queues.

6. Delay-based scheduling
— Suppose we want to prioritize latency-sensitive traffic. Say,
xbox live traffic (latency-sensitive) over email (not)
- Solution: priority queueing
- Two queues: xbox queue, email queue. Serve xbox queue if it has
a packet. If not, serve email queue.
- (Can extend this idea to more than two queues)

- "What queue to send a packet from" is the problem of scheduling.
That's different from queue management: "When to drop/mark packets
in a single queue"

— Lingering problem: a lot of xbox traffic => starving out the email
traffic. We'll come back to that.

7. Bandwidth-based scheduling
- What if we, instead, want to allocate a certain amount of
bandwidth to each queue?

8. Round-robin

(Note: in class, all of my examples used Skype/Spotify and Dropbox.
Below you have the same examples, just with different apps.)

— First case: want xbox and email traffic to each get 50% of
bandwidth
— Solution: round-robin scheduler
- Take a packet from the xbox queue, then the email queue, then
the xbox queue, then the email queue,
- But, what if packet sizes are different:

xbox: [10 | 10 | 10 | 10]
email: [100 | 100 | 100 | 100]

With this scheme we'll send 10 bytes of xbox traffic for every
100 bytes of email traffic. Not what we want!
- => Can't handle variable packet sizes (-)
— Also, in its purest form, RR doesn't allow us to weight traffic
differently (e.g., 66% xbox 33% email instead of a 50/50 split)

9. Weighted RR
— Take the weights, but factor packet size in as well.
— Algorithm:

in each round:
for each queue q:
g.norm = qg.weight / q.mean_packet_size
min = min of q.norm’s over all flows
for each queue q:
g.n_packets = g.norm / min
send g.n_packets from queue q

- Example 1:

xbox: [10 | 10 | 10 | 10]
email: [100 | 100 | 100 | 100]

xbox.weight = 2/3 email.weight = 1/3 <—- normalize
weights

xbox.mean = 10 email.mean = 100 <—— mean packet size
xbox.norm = 2/3/10 email.norm = 1/3/100
= 1/15 = 1/300

min norm = 1/300

1/300/(1/300)
1

xbox.packets = 1/15/(1/300) email.packets

= 20

So we send 20 packets = 20%x10 bytes = 200 bytes of xbox traffic
for every 1 packet = 1x100 bytes = 100 byets of email traffic.

- Example 2:
xbox: [5 |5 | 10 | 10 1]
email: [1] 1] 1| 1]
xbox.weight = 2/3 email.weight = 1/3
xbox.mean = 7.5 email.mean = 1
xbox.norm = 4/45 email.norm = 1/3

min norm = 4/45

xbox.packets =1 email.packets = 3-4

So for every 3-4 bytes of email, we'll send 5-10 bytes of xbox.
Not quite what we want..

— Also: how do we calculate mean packet size? Over last n packets?
Over all packets ever?

10. Deficit round-robin
— Queues accumulate "credit" which specifies how many bytes they're
allowed to send in the next round. Credit carries over to handle
larger packet sizes.
- Algorithm:

in each round:
for each queue q:
g.credit += g.quantum
while g.credit >= size of next packet p:
g.credit —= size of p
send p

- Example 1:

xbox: [10 | 10 | 5 | 5 | 10 | 10]
email: [10 | 10 | 10 | 10 | 10 | 10]

xbox.Quantum = 20 <—— note: 20;10 not 2/3;1/3 (see below)

email.Quantum = 10
xbox.credit = 0

email.credit = 0

round 1:
xbox.credit += xbox.Quantum = 20
while xbox.credit > next packet size:
send next packet
decrement packet size from credit
=> we'll send 2 xbox packets, and xbox.credit = 0
xbox queue is now: [10 | 1@ | 5 | 5]

email.credit += email.Quantum = 10
=> we'll send just the first packet, and email.credit = 0
email queue is now [10 | 10 | 10 | 10 | 10]

round 2:

xbox.credit += 20 = 20

=> have enough credit to send the next three packets
xbox.credit = 0
xbox.queue = [10]

email.credit += 10

=> have enough credit to send next packet
email.credit = 0
email.queue = [10 | 10 | 10 | 10]

So we sent 20 bytes for every 10 bytes of email, even with
variable packet sizes within the queue.

— Quantums are larger because they reflect a packet size
- Small quantums: go through a lot of rounds before sending a
packet
— Large quantums: potentially send a lot of packets from one queue
before moving onto the next

- Example 2:
xbox = [20 | 750 | 200] xbox.Quantum = 500
email = [500 | 500] email.Quantum = 500
round 1:

xbox.credit = 500
can send first packet; xbox.credit = 300
cannot send next packet

email.credit = 500
can send first packet; email.credit = 0

11.

round 2:

xbox.credit = 300 + 500 = 800 <—— credit carries over!
can send first packet; xbox.credit = 50
can send second packet; xbox.credit = 30

email.credit = 500
can send first packet; email.credit = 0

— Credit carrying over helps deal with variable (and large) packet

sizes)

— Pros of DRR:

— Don't need mean packet size
- Give near-perfect fairness (we won't prove this)
- 0(1) packet processing

— In fact: schemes that increase fairness also increase packet

processing.

Discussion
- Traffic differentiation: a good idea? In theory, sure. But:
— Hard to decide what granularity of isolation makes sense
(per-app? per—flow?)
— per—app also requires deep packet inspection. Expensive and
thwarted by encryption.
- per-flow = lots of state.
- For fair queueing:
- Schemes (except deficit RR) are expensive
- Have to change switches

— How to you choose which traffic gets priority? And who should

make that decision?

- For priority queueing:

— Unclear how multiple methods of priority queueing would
interact across the Internet

— *xShould* we allow traffic to be prioritized at all?

— Depressing conclusion: there's enough bandwidth that usually a
single FIFO queue works fine :/

— Queue-management: a good idea? Again, in theory, yes.

- In fact, RED/ECN —— or their ideas —- are used in some
environments (DCTCP)..

- ..But not on the entire Internet
- Hard to set parameters
- Hard to figure out interactions between schemes
- Have to change switches

— In-network resource-management: a good idea?

— Should we do any of this? Who should make these decisions?
Should the network '"help" the endpoints, possibly providing
better performance, but also possibly providing unnecessary
functionality?

