6.033: Networking: P2P Networks + CDNs
Lecture 12
Katrina LaCurts, lacurts@mit.edu

0. Introduction

- This week: "new" technologies on the Internet. How do they work?
Are they overcoming any problems in the existing architecture? Do
they invalidate any of our assumptions? Do they provide
opportunities?

— Today: file-sharing, VoIP, and video-streaming

— Commonalities: all deal with P2P networks, or related constructs
(CDNs).

1. File-sharing: getting a file from one person (machine) to another
— Can use client/server
- client requests file, server responds with the data
- HTTP, FTP work this way
— Downsides: single point of failure, expensive, doesn't scale
— Could use CDNs
— Buy multiple servers, put them near clients to decrease latency
— No single point of failure, scales better
- See the next recitation for more discussion

2. Peer-to-peer (P2P) networks for file-sharing

— Distribute the architecture to the extreme

- Once a client downloads (part of) the file from the server, that
client can upload (part of) the file to others. Put clients to
work!

— In theory: infinitely scalable

- P2P networks create overlays on top of the underlying Internet (so
do CDNs)

- Problem: what if users aren't willing to upload?

3. BitTorrent: how to incentivize peers to upload
- Basics of original BitTorrent (BT) protocol:

— Create a .torrent file, which contains meta-information about
the file (file name, length, info about pieces that comprise the
file, URL of tracker)

- Have a tracker. A server that knows the identity of all the

peers involved in your file transfer.

— To download:

— Peer contacts tracker

— Tracker responds with list of other peers involved in transfer

— Peer connects to these other peers, begins to transfer blocks
(see below)

- Some peers are seeders: already have the entire file (maybe
servers that host the file, or just nice peers who are
sticking around)

— In the actual download, peers request blocks: pieces of pieces
- Details/terminology doesn't matter. Just know that blocks are



small (~16KB) chunks of the file.
- Request blocks in a random order (more or less)

- What incentivizes users to upload (UL) rather than just

download(DL)ing?

- High-level: users aren't allowed to DL from a user unless
they're also ULing to that user
- So peers want mutual interest: A has to have blocks that B

needs, and vice versa.

- Protocol is divided into rounds. In round n, some number of
peers upload blocks to Peer X. 1In round n+l, Peer X will send
blocks to the peers that uploaded the most in round n.
(Typically, to the top four peers.)

- How do peers get started? Each peer reserves some (small)
amount of bandwidth to give away freely

This method of incentivizing peers is part of what allowed P2P

file-sharing to take off.

4. DHTs

Lingering problem: tracker is central point of failure

Most BT clients today are "trackerless", and use Distributed Hash

Tables (DHTs) instead.

Hash table API:

put(key, value) --> store value in hash(key) index

get(key) —-—> retrieve value at index hash(key)

DHT: hash table, but across multiple machines

— Why? Maybe your data doesn't fit on one machine, or maybe you
don't want a centralized collection of data

For BitTorrent: DHT stores <hash(URL), IP> key-value pairs. Then,

when someone wants to download a file, they get(URL).

- Assume collisions can be dealt with well (they are)

What's hard about this?

— Dealing with a machine going down (idea: put each key/value pair

on more than one machine)

Dealing with machines joining the DHT

Keeping load stable

Keeping data up to date

How to find a particular key/value pair

Last one is easy if we allow a centralized component, but that's

what we're trying to avoid!

In practice: users send get(key) request to any node in the DHT.

That node either has the key, or can direct the user to a "closer"

node

For more details, take 6.824. For 6.033, it's enough to know that

BitTorrent no longer has a central point of failure. This also

gives you a taste of the types of systems that are coming after

spring break :)

5. VoIP: Voice over IP

Talking specifically about Skype, a proprietary system
Skype used to use a P2P network for two things: to improve



performance, allow certain connections to work at all.
- Recall the first networking lecture. Internet bred NATs: Network
Address Translators.
— Consider client A behind a NAT, who wants to initiate a
connection to server S. A's IP is private (can't route to

it);
S's and N's are public.
A——N-——S5S
- A sends a packet: [to:S from:A]
- N rewrites the header: [to:S from:N]
— and stores some state
- S receives it, sends response back to N: [to:N from:S]
- N uses stored state to figure out that this packet is really

meant for A
- N will keep track of the port(s) that A is communicating on.
Communication via those ports is then meant for A.
- Now imagine two clients, both behind NATs

A N1 N2 S

- Now A doesn't even know S's IP (private IPs aren't routable).
It also doesn't know N2's IP; it has no way to get that.

— For Skype: means that A and S can't call each other

— Skype provides a directory service, so assume we can get N2's
public IP. When N2 gets packet destined for S, it has no idea
what to do with it.

- (See slides for example)

— Skype will employ an additional node —— a "supernode" —— P, with a
public IP, and route A and S's calls through P:

P

/ \
A —N1 N2 —S5S

- P keeps a bunch of state to get this to work, and A and S must
both be registered users of Skype. Details not important for
6.033.

— Seems like this will affect performance, so Skype only let you be
a supernode if your memory/CPU is sufficient (and you have a
public IP)

- Good idea?

- A/S might not want their (encrypted) call routed through someone
else

- P might not want to pay to transit traffic for A and S

— Today: Microsoft owns all of the supernodes, making this less of a
P2P network and more of a hierarchy
— Skype also claims that its P2P system improves quality by

allowing for more optimal routing



https://support.skype.com/en/faq/FA10983/what—-are—-p2p—-
communications

6. Video-streaming (briefly)
- Can we just use BitTorrent to stream (live) video?
- streaming requires getting blocks (roughly) in order
— also requires certain amount of bandwidth at all times
— Probably not
- BT works because peers can acquire blocks in any order
— Moreover, most BT peers are on residential links, which have
underwhelming upload bandwidth.
- What's good for streaming? CDNs!
— Thursday’s recitation: what CDNs bring to the table that P2P
networks don't
— Also think about whether you want to reconsider CDNs for
file-sharing



