
6.033: Networking: P2P Networks + CDNs
Lecture 12
Katrina LaCurts, lacurts@mit.edu

0. Introduction
 - This week: "new" technologies on the Internet. How do they work?
 Are they overcoming any problems in the existing architecture? Do
 they invalidate any of our assumptions? Do they provide
 opportunities?
 - Today: file-sharing, VoIP, and video-streaming
 - Commonalities: all deal with P2P networks, or related constructs
 (CDNs).

1. File-sharing: getting a file from one person (machine) to another
 - Can use client/server
 - client requests file, server responds with the data
 - HTTP, FTP work this way
 - Downsides: single point of failure, expensive, doesn't scale
 - Could use CDNs
 - Buy multiple servers, put them near clients to decrease latency
 - No single point of failure, scales better
 - See the next recitation for more discussion

2. Peer-to-peer (P2P) networks for file-sharing
 - Distribute the architecture to the extreme
 - Once a client downloads (part of) the file from the server, that
 client can upload (part of) the file to others. Put clients to
 work!
 - In theory: infinitely scalable
 - P2P networks create overlays on top of the underlying Internet (so
 do CDNs)
 - Problem: what if users aren't willing to upload?

3. BitTorrent: how to incentivize peers to upload
 - Basics of original BitTorrent (BT) protocol:
 - Create a .torrent file, which contains meta-information about
 the file (file name, length, info about pieces that comprise the
 file, URL of tracker)
 - Have a tracker. A server that knows the identity of all the

 peers involved in your file transfer.
 - To download:
 - Peer contacts tracker
 - Tracker responds with list of other peers involved in transfer
 - Peer connects to these other peers, begins to transfer blocks
 (see below)
 - Some peers are seeders: already have the entire file (maybe
 servers that host the file, or just nice peers who are
 sticking around)
 - In the actual download, peers request blocks: pieces of pieces
 - Details/terminology doesn't matter. Just know that blocks are

 small (~16KB) chunks of the file.
 - Request blocks in a random order (more or less)
 - What incentivizes users to upload (UL) rather than just
 download(DL)ing?
 - High-level: users aren't allowed to DL from a user unless
 they're also ULing to that user
 - So peers want mutual interest: A has to have blocks that B
 needs, and vice versa.
 - Protocol is divided into rounds. In round n, some number of
 peers upload blocks to Peer X. In round n+1, Peer X will send
 blocks to the peers that uploaded the most in round n.
 (Typically, to the top four peers.)
 - How do peers get started? Each peer reserves some (small)
 amount of bandwidth to give away freely
 - This method of incentivizing peers is part of what allowed P2P
 file-sharing to take off.

4. DHTs
 - Lingering problem: tracker is central point of failure
 - Most BT clients today are "trackerless", and use Distributed Hash
 Tables (DHTs) instead.
 - Hash table API:
 put(key, value) --> store value in hash(key) index
 get(key) --> retrieve value at index hash(key)
 - DHT: hash table, but across multiple machines
 - Why? Maybe your data doesn't fit on one machine, or maybe you
 don't want a centralized collection of data
 - For BitTorrent: DHT stores <hash(URL), IP> key-value pairs. Then,
 when someone wants to download a file, they get(URL).
 - Assume collisions can be dealt with well (they are)
 - What's hard about this?
 - Dealing with a machine going down (idea: put each key/value pair
 on more than one machine)
 - Dealing with machines joining the DHT
 - Keeping load stable
 - Keeping data up to date
 - How to find a particular key/value pair
 - Last one is easy if we allow a centralized component, but that's
 what we're trying to avoid!
 - In practice: users send get(key) request to any node in the DHT.
 That node either has the key, or can direct the user to a "closer"
 node
 - For more details, take 6.824. For 6.033, it's enough to know that
 BitTorrent no longer has a central point of failure. This also
 gives you a taste of the types of systems that are coming after
 spring break :)

5. VoIP: Voice over IP
 - Talking specifically about Skype, a proprietary system
 - Skype used to use a P2P network for two things: to improve

 performance, allow certain connections to work at all.
 - Recall the first networking lecture. Internet bred NATs: Network
 Address Translators.
 - Consider client A behind a NAT, who wants to initiate a

 connection to server S. A's IP is private (can't route to
it);

 S's and N's are public.

 A --- N ---- S

 - A sends a packet: [to:S from:A]
 - N rewrites the header: [to:S from:N]
 - and stores some state
 - S receives it, sends response back to N: [to:N from:S]
 - N uses stored state to figure out that this packet is really
 meant for A
 - N will keep track of the port(s) that A is communicating on.
 Communication via those ports is then meant for A.
 - Now imagine two clients, both behind NATs

 A --- N1 ---- N2 --- S

 - Now A doesn't even know S's IP (private IPs aren't routable).
 It also doesn't know N2's IP; it has no way to get that.
 - For Skype: means that A and S can't call each other
 - Skype provides a directory service, so assume we can get N2's
 public IP. When N2 gets packet destined for S, it has no idea
 what to do with it.
 - (See slides for example)
 - Skype will employ an additional node -- a "supernode" -- P, with a
 public IP, and route A and S's calls through P:

 P
 / \
 A -- N1 N2 -- S

 - P keeps a bunch of state to get this to work, and A and S must
 both be registered users of Skype. Details not important for
 6.033.
 - Seems like this will affect performance, so Skype only let you be
 a supernode if your memory/CPU is sufficient (and you have a
 public IP)
 - Good idea?
 - A/S might not want their (encrypted) call routed through someone
 else
 - P might not want to pay to transit traffic for A and S
 - Today: Microsoft owns all of the supernodes, making this less of a
 P2P network and more of a hierarchy
 - Skype also claims that its P2P system improves quality by
 allowing for more optimal routing

 https://support.skype.com/en/faq/FA10983/what-are-p2p-
communications

6. Video-streaming (briefly)
 - Can we just use BitTorrent to stream (live) video?
 - streaming requires getting blocks (roughly) in order
 - also requires certain amount of bandwidth at all times
 - Probably not
 - BT works because peers can acquire blocks in any order
 - Moreover, most BT peers are on residential links, which have
 underwhelming upload bandwidth.
 - What's good for streaming? CDNs!
 - Thursday’s recitation: what CDNs bring to the table that P2P
 networks don't
 - Also think about whether you want to reconsider CDNs for
 file-sharing

