6.033: Fault Tolerance: Reliability via Replication
Lecture 14
Katrina LaCurts, lacurts@mit.edu

0.

Introduction

- Done with 0Ses, networking

— Now: how to systematically deal with failures, or build
"fault-tolerant" systems
- We'll allow more complicated failures and also try to recover

from failures

— Thinking about large, distributed systems. 100s, 1000s, even
more machines, potentially logated across the globe.

— Will also have to think about what these applications are doing,
what they need

. Building fault-tolerant systems

— General approach:

1. Indentify possible faults (software, hardware, design,

operation, environment, ...)

2. Detect and contain

3. Handle the fault

- do nothing, fail-fast (detect and report to next
higher-level), fail-stop (detect and stop), mask,
- Caveats

— Components are always unreliable. We aim to build a reliable
system out of them, but our guarantees will be probabilistic

— Reliability comes at a cost; always a tradeoff. Common
tradeoff is reliability vs. simplicity.

— All of this is tricky. It's easy to miss some possible faults
in step 1, e.g. Hence, we iterate.

- We'll have to rely on xsomex code to work correctly. 1In
practice, there is only a small portion of mission-critical
code. We have stringent development processes for those
components.

. Quantifying reliability

— Goal: increase availability

— Metrics:
MTTF = mean time to failure
MTTR = mean time to repair
MTBF = mean time between failures (MTTF + MTTR)

availability = MTTF / MTBF
— Example: Suppose my 0S crashes once every month, and takes 10
minutes to recover.

MTTF = 30 days = 720 hours = 43,200 minutes
MTTR = 10 minutes
MTBF = 43,210 minutes

availability = 43,200 / 43,210 = .9997
=> two hours of downtime per year



3. Reliability via Replication
— To improve reliability, add redundancy
— One way to add redundancy: replication
— Today: replication within a single machine to deal with disk
failures
— Tomorrow in recitation: replication across machines to deal
with machine failures.

4. Dealing with disk failures
— Why disks?
— Starting from single machine because we want to improve
reliability there first before we move to multiple machines
— Disks in particular because if disk fails, your data is gone.
Can replace other components like CPU easily. Cost of disk
failure is high.
— Are disk failures frequent?
— Manufactures claim MTBF is 700K+ hours, which is bogus.

- Likely: Ran 1000 disks for 3000 hours (125 days) => 3 million
hours total, had 4 failures, and concluded: 1 failure every
750,000 hours.

— But failures aren't memoryless: disk is more likely to fail at
beginning of its lifespan and the end than in the middle (see
slides)

5. Whole-disk failures
— General scenario: entire disk fails, all data on that disk is
lost. What to do? RAID provides a suite of techniques.
— RAID 1: Mirror data across 2 disks.
— Pro: Can handle single-disk failures
- Pro: Performance improvement on reads (issue two in parallel),
not a terrible performance hit on writes (have to issue two
writes, but you can issue them in parallel too)
— Con: To mirror N disks' worth of data, you need 2N disks
— RAID 4: With N disks, add an additional parity disk. Sector i on
the parity disk is the XOR of all of the sector i's from the data
disk.
— Pro: Can handle single-disk failures (if one disk fails, xor
the other disks to recover its data)
— Can use same technique to recover from single-sector errors
— Pro: To store N disks' worth of data we only need N+1 disks
— Pro: Improved performance if you stripe files across the
array. E.g., an N-sector-length file can be stored as one
sector

per disk. Reading the whole file means N parallel l-sector

reads

instead of 1 long N-sector read.

— RAID is a system for reliability, but we never forget about
performance, and in fact performance influenced much of the
design of RAID.

- Con: Every write hits the parity disk.



RAID 5: Same as RAID 4, except intersperse the parity sectors

amongst all N+1 disks to load balance writes. (see slide for

diagram)

- You need a way to figure out which disk holds the parity sector
for sector i, but it's not hard.

RAID 5 used in practice, but falling out in favor of RAID 6,

which uses the same techniques but provides protection against

two disks failing at the same time.

6. Your future

RAID, and even replication, don't solve everything.

- E.g., what about failures that aren't independent?

Wednesday: we'll introduce transactions, which let us make some
abstractions to reason about faults

Next-week: we'll get transaction-based systems to perform well on
a single machine.

Week after: we'll get everything to work across machines.



