
6.033: Fault Tolerance: Reliability via Replication
Lecture 14
Katrina LaCurts, lacurts@mit.edu

0. Introduction
 - Done with OSes, networking
 - Now: how to systematically deal with failures, or build
 "fault-tolerant" systems
 - We'll allow more complicated failures and also try to recover
 from failures
 - Thinking about large, distributed systems. 100s, 1000s, even
 more machines, potentially logated across the globe.
 - Will also have to think about what these applications are doing,
 what they need

1. Building fault-tolerant systems
 - General approach:
 1. Indentify possible faults (software, hardware, design,
 operation, environment, ...)
 2. Detect and contain
 3. Handle the fault
 - do nothing, fail-fast (detect and report to next
 higher-level), fail-stop (detect and stop), mask, ...
 - Caveats
 - Components are always unreliable. We aim to build a reliable
 system out of them, but our guarantees will be probabilistic
 - Reliability comes at a cost; always a tradeoff. Common
 tradeoff is reliability vs. simplicity.
 - All of this is tricky. It's easy to miss some possible faults
 in step 1, e.g. Hence, we iterate.
 - We'll have to rely on *some* code to work correctly. In
 practice, there is only a small portion of mission-critical
 code. We have stringent development processes for those
 components.

2. Quantifying reliability
 - Goal: increase availability
 - Metrics:
 MTTF = mean time to failure
 MTTR = mean time to repair
 MTBF = mean time between failures (MTTF + MTTR)
 availability = MTTF / MTBF
 - Example: Suppose my OS crashes once every month, and takes 10
 minutes to recover.
 MTTF = 30 days = 720 hours = 43,200 minutes
 MTTR = 10 minutes
 MTBF = 43,210 minutes
 availability = 43,200 / 43,210 = .9997
 => two hours of downtime per year

3. Reliability via Replication
 - To improve reliability, add redundancy
 - One way to add redundancy: replication
 - Today: replication within a single machine to deal with disk
 failures
 - Tomorrow in recitation: replication across machines to deal
 with machine failures.

4. Dealing with disk failures
 - Why disks?
 - Starting from single machine because we want to improve
 reliability there first before we move to multiple machines
 - Disks in particular because if disk fails, your data is gone.
 Can replace other components like CPU easily. Cost of disk
 failure is high.
 - Are disk failures frequent?
 - Manufactures claim MTBF is 700K+ hours, which is bogus.
 - Likely: Ran 1000 disks for 3000 hours (125 days) => 3 million
 hours total, had 4 failures, and concluded: 1 failure every
 750,000 hours.
 - But failures aren't memoryless: disk is more likely to fail at
 beginning of its lifespan and the end than in the middle (see
 slides)

5. Whole-disk failures
 - General scenario: entire disk fails, all data on that disk is
 lost. What to do? RAID provides a suite of techniques.
 - RAID 1: Mirror data across 2 disks.
 - Pro: Can handle single-disk failures
 - Pro: Performance improvement on reads (issue two in parallel),
 not a terrible performance hit on writes (have to issue two
 writes, but you can issue them in parallel too)
 - Con: To mirror N disks' worth of data, you need 2N disks
 - RAID 4: With N disks, add an additional parity disk. Sector i on
 the parity disk is the XOR of all of the sector i's from the data
 disk.
 - Pro: Can handle single-disk failures (if one disk fails, xor
 the other disks to recover its data)
 - Can use same technique to recover from single-sector errors
 - Pro: To store N disks' worth of data we only need N+1 disks
 - Pro: Improved performance if you stripe files across the
 array. E.g., an N-sector-length file can be stored as one
sector
 per disk. Reading the whole file means N parallel 1-sector
reads
 instead of 1 long N-sector read.
 - RAID is a system for reliability, but we never forget about
 performance, and in fact performance influenced much of the
 design of RAID.
 - Con: Every write hits the parity disk.

 - RAID 5: Same as RAID 4, except intersperse the parity sectors
 amongst all N+1 disks to load balance writes. (see slide for
 diagram)
 - You need a way to figure out which disk holds the parity sector
 for sector i, but it's not hard.
 - RAID 5 used in practice, but falling out in favor of RAID 6,
 which uses the same techniques but provides protection against
 two disks failing at the same time.

6. Your future
 - RAID, and even replication, don't solve everything.
 - E.g., what about failures that aren't independent?
 - Wednesday: we'll introduce transactions, which let us make some
 abstractions to reason about faults
 - Next-week: we'll get transaction-based systems to perform well on
 a single machine.
 - Week after: we'll get everything to work across machines.

