6.033: Fault Tolerance: Logging
Lecture 16
Katrina LaCurts, lacurts@mit.edu

0. Introduction

— Currently: building reliable systems out of unreliable
components. We're working on implementing transactions which
provide
- atomicity
- isolation

- So far: have a poorly-performing version of atomicity via shadow
copies.

— Today: Logging, which will give us reasonable performance for
atomicity. Logging also works when we have multiple concurrent
transactions, even though for today we're not thinking about
concurrency.

1. Motivating example

- begin // Tl
A = 100
B = 50
commit // At commit: A=100; B=50
begin // T2
A=A-20
B =B + 20
commit // At commit: A=80; B=70
begin // T3
A=A+ 30
——CRASH——

— Problem: A = 110, but T3 didn't commit. We need to revert.

2. Basic idea

- Keep a log of all changes and whether a transaction commits or
aborts
- every transaction gets a unique ID
— UPDATE records include old an new values of a variable
— COMMIT records specify that transaction committed
— ABORT records specify that transaction aborted

- Not always needed
- (See slides for the log for this example)
— Nice: updates are small appends

3. How to use a log for transactions
- On begin: allocate new transaction ID (TID)
— On write: append entry to log
— On read: scan log to find last committed value
— On commit: write commit record



— This is the commit point
— Atomic because we can assume it's a single-sector write
— Another way to do it would be to put checksums on each record
and ignore partially-written records
— On abort: nothing (could write an ABORT record but not strictly
needed)
— On recover: nothing
- (see slide for code)

Performance of log

— Writes: good. sequential = fast.

- Reads: terrible. Must scan entire log.
- Recovery: instantaneous

. Cell Storage

— Improve read performance with cell storage.
- (For us) stored on disk, i.e., non-volatile storage
- Updates go to log and cell storage
— Read from cell storage
- "Log" = write to log. "Install" = write to cell storage
- How to recover
— Scan the log backwards, determine what actions aborted, and
undo them
- (see slide for code)
- What if we crash during recovery? No worries; recover() is
idempotent. Can do it repeatedly.
- How to write
— Log before install, not the other way; otherwise, can't recover
from a crash in between the two writes.
— This is write—-ahead logging

Performance of log + cell storage

- Writes: Okay, but now we write to disk twice instead of once
- Reads: fast

- Recovery: Bad. Have to scan the entire log.

. Improving performance
- Improve writes: use a (volatile) cache
— Reads go to cache first, writes go to cache and are eventually
flushed to cell storage
- Problem: After crash, there may be updates that didn't make it
to cell storage (were in cache but not flushed)
— Also could be updates in cell storage that need to be undone,
but we had that problem before
- Solution: We need a redo phase in addition to an undo phase in
our recovery (see slide for code)
- Improving recovery
— Problem: recovery takes longer and longer as the log grows
- Solution: truncate the log
- How?



— Assuming no pending actions

— Flush all cached updates to cell storage

- Write a CHECKPOINT record

— Truncate the log prior to the CHECKPOINT record

- Usually amounts to deleting a file
- With pending actions, delete before the checkpoint and
earliest undecided record.
— ABORT records
— Can be used to help recovery and skip undo-ing aborted

transaction. Not necessary for correctness —— can always just
pretend we crashed —— but can help.

. What about un-undo-able actions?

— What if our transaction fires a missile and then aborts?

- Typically: wait for software that controls the action to commit
and then take the action, but have a special way to detect
whether the action has/will happened

. Summary

- Logging is a general technique for achieving atomicity

— Writes are fast, reads can be fast with cell storage

- Need to log before installing (write-ahead), and need a

recovery process

Tomorrow is recitation: logging for file systems

Now: we're good with atomicity

- In fact, logging will work fine with concurrent transactions;
the problem will be figuring out which steps we can actually
run in parallel

Wednesday: isolation

Next week: distributed transactions



