
6.033: Fault Tolerance: Logging
Lecture 16
Katrina LaCurts, lacurts@mit.edu

0. Introduction
 - Currently: building reliable systems out of unreliable
 components. We're working on implementing transactions which
 provide
 - atomicity
 - isolation
 - So far: have a poorly-performing version of atomicity via shadow
 copies.
 - Today: Logging, which will give us reasonable performance for
 atomicity. Logging also works when we have multiple concurrent
 transactions, even though for today we're not thinking about
 concurrency.

1. Motivating example
 - begin // T1
 A = 100
 B = 50
 commit // At commit: A=100; B=50

 begin // T2
 A = A - 20
 B = B + 20
 commit // At commit: A=80; B=70

 begin // T3
 A = A + 30
 --CRASH--
 - Problem: A = 110, but T3 didn't commit. We need to revert.

2. Basic idea
 - Keep a log of all changes and whether a transaction commits or
 aborts
 - every transaction gets a unique ID
 - UPDATE records include old an new values of a variable
 - COMMIT records specify that transaction committed
 - ABORT records specify that transaction aborted
 - Not always needed
 - (See slides for the log for this example)
 - Nice: updates are small appends

3. How to use a log for transactions
 - On begin: allocate new transaction ID (TID)
 - On write: append entry to log
 - On read: scan log to find last committed value
 - On commit: write commit record

 - This is the commit point
 - Atomic because we can assume it's a single-sector write
 - Another way to do it would be to put checksums on each record
 and ignore partially-written records
 - On abort: nothing (could write an ABORT record but not strictly
 needed)
 - On recover: nothing
 - (see slide for code)

4. Performance of log
 - Writes: good. sequential = fast.
 - Reads: terrible. Must scan entire log.
 - Recovery: instantaneous

5. Cell Storage
 - Improve read performance with cell storage.
 - (For us) stored on disk, i.e., non-volatile storage
 - Updates go to log and cell storage
 - Read from cell storage
 - "Log" = write to log. "Install" = write to cell storage
 - How to recover
 - Scan the log backwards, determine what actions aborted, and
 undo them
 - (see slide for code)
 - What if we crash during recovery? No worries; recover() is
 idempotent. Can do it repeatedly.
 - How to write
 - Log before install, not the other way; otherwise, can't recover
 from a crash in between the two writes.
 - This is write-ahead logging

6. Performance of log + cell storage
 - Writes: Okay, but now we write to disk twice instead of once
 - Reads: fast
 - Recovery: Bad. Have to scan the entire log.

7. Improving performance
 - Improve writes: use a (volatile) cache
 - Reads go to cache first, writes go to cache and are eventually
 flushed to cell storage
 - Problem: After crash, there may be updates that didn't make it
 to cell storage (were in cache but not flushed)
 - Also could be updates in cell storage that need to be undone,
 but we had that problem before
 - Solution: We need a redo phase in addition to an undo phase in
 our recovery (see slide for code)
 - Improving recovery
 - Problem: recovery takes longer and longer as the log grows
 - Solution: truncate the log
 - How?

 - Assuming no pending actions
 - Flush all cached updates to cell storage
 - Write a CHECKPOINT record
 - Truncate the log prior to the CHECKPOINT record
 - Usually amounts to deleting a file
 - With pending actions, delete before the checkpoint and

 earliest undecided record.
 - ABORT records
 - Can be used to help recovery and skip undo-ing aborted
 transaction. Not necessary for correctness -- can always just
 pretend we crashed -- but can help.

8. What about un-undo-able actions?
 - What if our transaction fires a missile and then aborts?
 - Typically: wait for software that controls the action to commit
 and then take the action, but have a special way to detect
 whether the action has/will happened

9. Summary
 - Logging is a general technique for achieving atomicity
 - Writes are fast, reads can be fast with cell storage
 - Need to log before installing (write-ahead), and need a

 recovery process
 - Tomorrow is recitation: logging for file systems
 - Now: we're good with atomicity
 - In fact, logging will work fine with concurrent transactions;
 the problem will be figuring out which steps we can actually
 run in parallel
 - Wednesday: isolation
 - Next week: distributed transactions

