6.033: Security - Introduction
Lecture 20
Katrina LaCurts, lacurts@mit.edu

skokokoskskskskskskokokskskskokskskkokskskskokskskskokskskskokskskskskokskskskokskskskokskskskokskskskskskskskskoksk sk sk sk sk sk sk sk ok k sk ok ok
* Disclaimer: This is the beginning of the security section in

* 6.033. Only use the information you learn in this portion of the
* class to secure your own systems, not to attack others.
skokokoskskokskskskokokokskokokskskskokskskskokskskskokskskskokskskskskskskskskskskskskokskskskok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok skk sk ok ok

0.

Intro

Previously in 6.033: Building reliable systems in the face of
more—or—1less random, more-or-less independent failures.
Today: Building systems that uphold some goals in the face of
targeted attacks from an adversary

What can an adversary do?

Personal information stolen

Phishing attacks

Botnets

Worms/viruses

- Etc.

. Computer security vs. general security

Similarities:

— Compartmentalization (different keys for different things)
- Log information, audit to detect compromises

- Use legal system for deterrence

Differences

— Internet = fast, cheap, scalable attacks

Number and type of adversaries is huge
Adversaries are often anonymous

Adversaries have a lot of resources (botnets)
Attacks can be automated

Users have poor intuition about computer security

. Difficulties of computer security

Aside from everything above..

It's difficult to enumerate all threats facing computers

Achieving something despite whatever an adversary might do is a

negative goal

— Contrast: an example of a positive goal is "katrina can read
grades.txt". Can easily check to see if the goal is met.

— Example of a negative goal: "katrina cannot read grades.txt".
Not enough to just ask katrina if she can read grades.txt and
have her respond "no".

— Hard to reason about all possible ways she could get access:

change permissions, read backup copy, intercept network
packets..
One failure due to an attack might be one too many (e.g.,
disclosing grades.txt even once)

*
*
*

— Failures due to an attack can be highly correlated; difficult to
reason about failure probabilities.

- As a result: we have no complete solution. We'll learn how to
model systems in the context of security, and how to
assess common risks/combat common attacks.

3. Modeling security
— Need two things;
1. Our goals, or our "policy"
— Common ones:
- Privacy: limit who can read data
- Integrity: limit who can write data
- Availability: ensure that a service keeps operating
2. Our assumptions, or our "threat model"
- What are we protecting against? Need plausible assumptions
- Examples:
— Assume that the adversary controls some computers or
networks but not all of them
— Assume that then adversary controls some software on
computers, but doesn't fully control those machines
— Assume that the adversary knows some information, such as
passwords or encryption keys, but not all of them
— Many systems are compromised due to incomplete threat models or
unrealistic threat models
- E.g., assume the adversary is outside of the company
network/firewall when they're not. Or don't assume that
the
adversary can do social engineering.
— Try not to be overambitious with our threat models; makes
modularity hard.
- Instead: be very precise, and then reason about assumptions and
solutions. Easier to evolve threat model over time.

4. Guard Model
- Back to client/server model
- Usually, client is making a request to access some resource on
the server. So we're worried about security at the server.

Server
Client ————> [resource]

- To attempt to secure this resource, server needs to check all
accesses to the resource. "Complete mediation"

- Server will put a '"guard" in place to mediate every request for
this particular resource. Only way to access the resource is to
use the guard.

Server
Client ————> [guard | resource]

Guard often provides:
— Authentication: verify the identify of the principal. E.qg.,

che

cking the client's username and password.

— Authorization: verify whether the principal has access to

per
acc

form its request on the resource. E.g., by consulting an
ess control list for a resource.

Guard model applies lots of places, not just client/server
Uses a few assumptions:
— Adversary should not be able to access the server's resources

dir

ectly.

- Server properly invokes the guard in all the right places.
- (We'll talk about what happens if these are violated later)
Guard model makes it easier to reason about security
Examples:

1.

UN

. We

IX file system

client: a process

server: 0S kernel

resource: files, directories

client's requests: read(), write() system calls
mediation: U/K bit and the system call implementation
principal: user ID

authentication: kernel keeps track of a user ID for each
process

authorization: permission bits & owner UID in each file's
inode

b server running on UNIX

client: HTTP-speaking computer

server: web application (let's say it's written in python)
resource: wiki pages (say)

requests: read/write wiki pages

mediation: server stores data on local disk, accepts only
HTTP requests (this requires setting file permissions, etc.,
and assumes the 0S kernel provides complete mediation)
principal: username

authentication: password

authorization: list of usernames that can read/write each
wiki page

Firewall. (A firewall is a system that acts as a barrier
between a, presumably secure, internal network and the outside
world. It keeps untrusted computers from accessing the
network.)

client: any computer sending packets

server: the entire internal network

resource: internal servers

requests: packets

mediation:

— internal network must not be connected to internet in
other ways.

- no open wifi access points on internal network for
adversary to use.

- no internal computers that might be under control of
adversary.
- principal, authentication: none
— authorization: check for IP address & port in table of
allowed connections.

. What can go wrong?

1.
2.

Complete mediation is bypassed by software bugs

Complete mediation is bypassed by an adversary
How do we prevent these things? Reduce complexity: reduce the
number of components that must invoke the guard.

In security terminology, this is the "principle of least
privilege". Privileged components are "trusted". We limit the
number of trusted components in our systems, because if one
breaks, it's bad.

Policy vs. mechanism. High-level policy is (ideally) concise
and clear. Security mechanisms (e.g., guards) often provide
lower—level guarantees.

Interactions between layers, components. Consider this code:
> cd /mit/bob/project

> cat ideas.txt

Hello world.

> mail alice@mit.edu < ideas.txt

Seems fine. But suppose in between us cat'ing ideas.txt and
mailing Alice, Bob changes ideas.txt to a symlink to grades.txt.
Users make mistakes.

Cost of security. Users may be unwilling to pay cost (e.g.,
inconvenience) of security measures. Cost of security mechanism
should be commensurate with value.

