6.033: Security - Principal Authentication
Lecture 21
Katrina LaCurts, lacurts@mit.edu

kokskokskokskkokokokokokokokskok sk ko kokkk sk ok sk ok kok ok ko sk kk sk sk ok skokskok sk sk k sk k sk sk sk sk skok sk ok sk kk sk k sk k sk skskokkok >k

* Disclaimer: This is part of the security section in 6.033. Only *
* use the information you learn in this portion of the class to *
% secure your own systems, not to attack others. *

skkokokokokokskkokokskokokkskokokskkokkskokok sk kokkskokok sk kokok sk kok sk skokok sk kok sk skokok sk kok sk skokok sk kok sk sk okok sk kokk sk ok

0. Introduction
— Current security guidelines
— Be explicit about our policy and threat model
- Use the guard model to provide complete mediation
- Make as few components trusted as possible
- Guard (in guard model) commonly provides authentication and
authorization
— Commonly, but not always; some systems let users be anonymous
— Today: principal authentication, primarily via passwords
- Later, we'll discuss principal authentication via something
other than passwords
— We are also not dealing with message authentication today;
we'll get to that in a later lecture.

1. Authentication via Passwords
— Goal of authentication: Verify that the user is who they say they
are. An attacker should *notx be able to impersonate the user.
— Why passwords?

— In theory, lots of options: A random 8-letter password => 2678
possibilities (more like 6078 if you allow
lowercase/caps/numbers/symbols). n-letter passwords even
better.

— Guessing is expensive; brute-force attack is infeasible

2. Implementing Passwords
- Scenario: logging into an account on a shared computer system
— Threat model: attacker has some access to the server on which
password information is stored
— Attacker does *notx have access to the network between client
and server; that comes in a future lecture

— Attempt 1: Store plaintext passwords on server. Very bad idea.
- If adversary has access to the server (example: they are a
sysadmin), they can just read passwords straight from the

accounts table.

- If adversary has access to server but not table, they could
use buffer overflow.

- Lesson: don't store secure information in plaintext

- Attempt 2: Store hashes of passwords on the server

A hash function H takes an input string of arbitrary size and

outputs a fixed-length string.

- If two input strings, x and y, are different, the probability
that H(x) = H(y) is virtually zero (hash functions are
"collision resistant").

- Cryptographic hash functions are one-way: Given H(x), it's
(very) hard to recover x.

- If adversary gets access to table, they just have hashes, not
passwords.

— But.. can compare that to hashes of popular passwords
- Rainbow table: map common passwords (e.g., "123456") to their

hashes.
— Actually more complex in practice

- With a rainbow table, adversary can figure out who has one of
the most common passwords, which is a lot of people.

- Hash functions that are fast to compute make this data
structure very easy to create. “Slow hashes” (key-derivation
functions) take longer, but it’s still possible to create
rainbow tables of the most common passwords.

— Lesson: think about human factors when designing secure systems

— Attempt 3: Salt the hashes

- Store username, "salt" (a random number), and the hash of the
password concatenated with the salt)

— Adversary *xwillx see the salt if they get this table, but to
build a rainbow table, they'd have to calculate the salt of
every common password concatenated with every possible salt.
It's impractical to build that table.

- They could build a rainbow table for a particular user (i.e.,
for a particular salt value). If they're targeting one
specific user, this might be worth it, but often isn't.

— The goal of many attacks is to get as many accounts as
possible

— The nice thing about rainbow tables is that you can build
them once and use them forever (they do take xsomex time to
create). One per user per salt is much more onerous.

3. Session Cookies
— Typically we use passwords to bootstrap authentication, but don't
continuously authenticate with our password for every command
- Security: Typing, storing, transmitting, checking password is a
risk.
- Convenience (sometimes). No one wants to type their password
for
every command. We could try to automate this process, but that
means we have to store our password somewhere, and you've seen
where that got us.
— Web apps often exchange passwords for session cookies: like
temporary passwords that are good for a limited time.
— Basic idea: client sends username/password to server. If it

checks
out, server sends back a cookie:

cookie = {username, expiration, H(serverkey | username |
expiration)}

Client uses this tuple to authenticate itself for some period of

time.
— No need to store password in (client) memory or re-enter it
— Why use serverkey in hash?

— Ensure that users can't fabricate the hash themselves

— Server can change serverkey, invalidate old cookies
— Can user change expiration?

- No. To do that, they'd also have to change the hash, which they

can't do (they don't know serverkey)

4. Phishing
- Phishing attacks: Adversary tricks users into visiting a
legitimate-looking site (that adversary owns), asks for
username/password
— Has nothing to do with whether the network is secure: we just
handed the password to the adversary

— Solution 1: Challenge-response protocol

- Assume (for now) the server stores plaintext passwords

— Instead of asking for the password, the server chooses a
random value r, sends it to the client.

- Client computes H(r + password), sends that back to the
server

- Server checks whether this matches its computation of the
hash with the expected password

- If the server didn't already know the password, it still
doesn't.

- If server stores (salted) hashes, we could have the client
compute H(r | H(p)) (or H(r | H(s | p))) and send that. But
then H(p) is effectively the password. And by storing hashes,
the server is storing passwords.

— Solution: SRP ("Secure Remote Password") protocol
— No details in 6.033, but allows server to store hashes of

passwords and still do a challenge-response

— Lesson: Make the server prove that it knows a secret without
revealing that secret.

- Another idea (not covered in lecture): Flip the challenge-
response
protocol.
— Put onus on server
— Client chooses Q, sends to server
- Server computes H(Q + password) and replies
- Only the authentic server would know your password!

— Rarely used in practice; app developers just care about apps

authenticating the user

— Complication: Combined with the original challenge-response

protocol, can fool server

— Suppose I'm an adversary that wants to be able to login to
the server. S sends me a challenge r, but I don't know the
password, so I can't compute H(r+p).

- Instead, I'll challenge S with the xsamex r, and replay its
response. E.g.:

Evil client S
< r
r > <- evil client issues its s*ownx
challenge
<———— H(r+p) — <- server responds to challenge
————— H(r+p) ——> <—- evil client responds to original

challenge

- Lesson: Be explicit. E.g., hash the intended recipient of

response (e.g., client or server), and have the recipient
verify t.

5. Bootstrapplng/Resettlng

How do we initially set a password for an account? If an
adversary can subvert this process, there's virtually nothing we
can do.

— MIT: admissions office vets each student, hands out account

codes.

— Many web sites: anyone with an email can create a new account.
How do we change our password, e.g., after compromise?
— MIT: walk over to accounts office, show ID, admin can reset

password.

- Many web sites: additional "security" questions used to reset

password.

Why does this matter?
— Password bootstrap / reset mechanisms are part of the security

system, important that they are not weak

Anecdote: Sarah Palin's Yahoo account was compromised by an
attacker guessing her security questions. Personal information
can be easy to find online.

Lesson: Don't forget the bootstrapping/resetting parts of a
system when designing it.

6. Password Alternatives
Password Managers

Automatically generate '"good" passwords for you

Securely keep track of your passwords, protected via one
*really*x good password (that you choose)

Pros: keeps users from picking bad passwords/reusing passwords
Cons: Less convenient, what happens if you lose the one good
password? Do you trust the authors of the password manager?

- Two-step verification
- Server texts you a code that you have to input (along with your
password) when you log in
— Pros: Adversaries need your password and your phone to mount
attack
— Cons: Inconvenient, slow
— Biometrics
- E.g., retina scans, fingerprints
- Pros: Adversaries have to be you (or near you) to log in
— Cons: Can you reset the “password”? Also hard to be anonymous
— Passwords aren’t perfect. Many alternatives are more secure in
some senses. But all have trade-offs for complexity, convenience

