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**********************************************************************
* Disclaimer: This is part of the security section in 6.033. Only    *
* use the information you learn in this portion of the class to      *
* secure your own systems, not to attack others.                     *
**********************************************************************

0. Today's threat model
   - Last time: adversary with access to server
   - Today: adversary in the network
   - What can adversary in the network do?
     - Observe packets
     - Corrupt packets
     - Inject packets
     - Drop packets
   - Some can be combated with techniques you already know
     - TCP senders retransmit dropped packets
     - Corrupt packets get dropped (at a router, usually), and thus
       also retransmitted
   - Need a plan, though, for carefully corrupted, injected, or
     sniffed packets
   - This lecture: focus on preventing an adversary in the network
     from observing/tampering with contents of packets
     - So NOT injecting new packets; that's next time
   - Goals (policy)
     1. Confidentiality: adversary cannot learn message contents
     2. Integrity: adversary cannot tamper with message contents
     - More accurately, if the adversary tampers with the message
       contents, the sender and/or receiver will detect it.
   - Result is known as a "secure channel"

1. Secure Channel Primitives
   - Ensure confidentiality by encryption
     - Encrypt(k, m) -> c ; Decrypt(k, c) -> m
       - k = key (secret; unknown to adversary, never transmitted)
       - m = message
       - c = ciphertext
       - Property: given c, it is (virtually) impossible to obtain m
         without knowing k
     - Encryption alone does not provide integrity
       - Adversary could change some bits in ciphertext
       - Other mathematical reasons
         - See http://security.stackexchange.com/questions/33569/
           why-do-you-need-message-authentication-in-addition-to-
encryption
         - Section 11.4.4 of the course textbook.
   - Ensure integrity via message authentication codes (MAC)



     - MAC(k, m) -> t
       - k = key
       - m = message
       - t = output
     - Similar to hash functions.  Difference: uses a key
       - Alternate name: "keyed hash function"
       - Adversary can't compute the MAC of a message; needs key.
         (This is not true for regular hash functions)
       - There are other subtle differences we won't get into.  One
         example:  MACs are not always subject to the same
         mathematical requirements as cryptographic hash functions.

2. Secure Channel Abstraction
   - So far:

    Sender                                      Receiver
    m
    c = encrypt(k, m)
    h = MAC(k, m)

    ------------------ [ c | h ] ---------->  m' = decrypt(k, c)
                                              check MAC(k, m') == h

   - If adversary intercepts [c|h] and tampers with it, receiver will
     know; MAC won't check out.

   - Aside: Instead of [c|h], sender could send either of these:
     - c | MAC(c)
     - encrypt(k, m | MAC(k,m))
     - All provide level of integrity that we need.  Different levels
       of security against other types of attacks; see http://crypto.
       stackexchange.com/questions/202/should-we-mac-then-encrypt-or-
       encrypt-then-mac if interested
   - Problem: adversary can intercept, and then retransmit message
     ("replay" message)
   - Solution: Include a sequence number in every message, and choose
     a new random sequence number for every connection

      Sender                    Receiver
      m
      c = encrypt(k, m | seq)
      h = MAC(k, m | seq)
        ----------- c | h -------->   m' | seq' = decrypt(k, c)
                                      check MAC(k, m' | seq') == h

   - If adversary intercepts message, can't replay in the same way
     because sender won't reuse sequence number
     - Assume sequence numbers don't wrap around
     - Aside: In reality, if there is a conversation that is long
       enough that the sequence number space is exhausted, a session



       is "renegotiated" between the sender and the receiver.  (You
       could, for instance, imagine that whenever a session is
       renegotiated, the sender and receiver both change their keys.
       In reality, they change a particular random value known as the
       session ID.
   - But if receiver is also sending to the sender (i.e., if they're
     both sending), the receiver might use that sequence number.  So
     adversary could replay in the other direction (a "reflection"
     attack)
   - Solution: Use different keys in each direction

3. Key Exchange
   - How do sender/receiver get keys in the first place?  Can't just
     send them in the clear in the beginning
   - Diffie-Hellman key exchange
     - Two parties: Alice and Bob ("sender" and "receiver" before)
     - Alice and Bob pick:
       - a prime number p
       - a "generator" g
         - Aside: For g to be a generator, it has to be a "primitive
           root modulo p".  In 6.033, don't worry about that; we'll
           always tell you g and p.  If you want to know more about
           primitive roots, take a cryptography, number theory, or
           abstract algebra class.
       - p and g don't need to be secret; assume adversary knows them
     - Alice picks random number a (secret)
     - Bob picks random number b (secret)
     - Alice sends g^a mod p to Bob
     - Bob sends g^b mod p to Alice
     - Alice computes (g^b mod p) ^ a mod p = g^ab mod p
     - Bob computes (g^a mod p) ^ b mod p = g^ab mod p
     - Secret key = g^ab mod p
     - Adversary can learn p, g, g^a mod p, g^b mod p.  From this, one
       cannot calculate g^ab mod p; you need to know either a or b to
       do that.
       - Trust me on that; won't prove it in 6.033
   - Problem: Man-in-the-middle attack
     - Adversary in middle of network intercepts (and responds to)
       messages in both directions;  Alice thinks she has established
       a connection with Bob, and vice versa; in reality, they've both
       established a connection with the adversary.

4. Cryptographic Signatures for Message Authentication
   - Problem with the above is that messages aren't authenticated;
     Alice doesn't know if she's really talking to Bob, and vice versa
   - Before: shared key between the two parties.  Known as symmetric
     key cryptography.
   - For signatures: public-key cryptography
     - Each user generates a key pair: (PK, SK)
     - PK is public: known to everyone, adversaries included



     - SK is secret: known only to user
     - PK and SK are related mathematically; we will not get into that
       here
       - RSA is a scheme that generates a key-pair for you.
     - SK let's you sign messages; PK let's you verify signatures (but
       NOT perform the signing)
   - Primitives
     - Sign(SK, m) -> sig.
       - SK = secret key
       - m = message
       - sig = signature
     - Verify(PK, m, sig) -> yes/no.
       - PK = public key
       - m = message
       - sig = signature
       - "yes/no" -> yes if signature is verified, no otherwise
   - Notation: m_SK = {m, sig=Sign(SK, m)}.  Given m_SK, and
     corresponding PK, we can check that m was signed by someone with
     SK
   - This is all similar to MACs.  Signatures don't require parties
     to share a key

5. Key Distribution
   - How do we distribute public keys?  Lots of ideas
   1. Alice remembers the key she used to communicate with Bob the
      last time.
      - Easy to implement, effective against subsequent
        man-in-the-middle attacks
      - Doesn't protect against MITM attacks the first time around,
        doesn't allow parties to change keys
   2. Consult some authority that knows everyone's public key
      - Doesn't scale (client asks authority for a PK for every new
        name)
      - Alice needs server's public key beforehand
   3. Authority, but pre-compute responses.  Authority creates signed
      messages: {Bob, PK_bob}_{SK_as}.  Anyone can verify that the
      authority signed this message, given PK_as.  When Alice wants to
      talk to Bob, she needs a signed message from the authority, but
      it doesn't matter where this message comes from as long as the
      signature checks out (i.e., Alice could retrieve the message
      from a different server).
      - This signed message is a certificate
      - More scalable
   - Certificate authorities bring up questions:
     - Who should run the certificate authority?
     - How does the browser get this list of CAs?
       - Generally they come with the browser.
     - How does the CA build its table of names <-> public keys?
       - Have to agree on how to name principals, and need a mechanism
         to check that a key corresponds to a name



     - What if a CA makes a mistake?
       - Need a way to revoke certificates
       - Expiration date?  Useful in long term, not for immediate
         problems
       - Publish certificate revocation list?  Works in theory, not as
         well in practice (CRLs sometimes incorrect, not always
         updated immediately)
         - Aside:
           http://ssl-research.ccs.neu.edu/papers/Heartbleed-IMC.pdf
       - Query online server to check certificate freshness?  Not a
         bad idea
   - Alternative: avoid CAs by using public keys as names (protocols:
     SPKI/SDSI).  Works well for names that users don't have to
     remember/enter

6. TLS: A protocol that does all of this
   - Lots of parts to this protocol
   - Interesting one: how the connection is set up:
     - Client and server agree on some parameters:
       - protocol version
       - random sequence numbers
       - cipher/compression scheme
     - Server sends client its certificate and list of CAs
     - Client verifies authenticity of server
     - Client sends secret value (the "pre_master_secret")
       encrypted with the server's public key
     - Client and server compute master_secret using a pseudorandom
       function and the pre_master_secret and two initial random
       sequence numbers as input
     - Both compute a bunch of keys
       - Client, server MAC keys; encrypt keys; others
     - Both send "finished" messages, which contain hashes of some of
       the previous messages
   - If this were a crypto class, we'd talk a lot about why each of
     these parts of necessary
   - This is not a crypto class.  But it is worth noting how complex
     this protocol is.  Complexity comes from supporting lots of
     options/protocols

7. Discussion
   - Why isn't traffic encrypted by default?
     - Can be computationally expensive
     - Complex to implement
     - Wasn't a well-known thing for most users until relatively
       recently
       - Historically just applied to transactions that obviously need
         to be secured. E.g., banking
     - Maybe we're at a point now where these arguments no longer
       apply?
   - Open vs. Closed Design



     - Should system designers keep details of encrypt/decrypt/MAC/
       etc. a secret?
     - No: make the weakest practical assumptions about the
       adversary.  Assume they known the algorithms, but not the
       secret keys.
       - Also lets us reuse well-tested, prove algorithms
       - Plus, if key is compromised, we can change it (unlike the
         algorithms)


