6.033: Security - Secure Channels
Lecture 22
Katrina LaCurts, lacurts@mit.edu

kokskokskokskkokokokokokokokskok sk ko kokkk sk ok sk ok kok ok ko sk kk sk sk ok skokskok sk sk k sk k sk sk sk sk skok sk ok sk kk sk k sk k sk skskokkok >k

* Disclaimer: This is part of the security section in 6.033. Only *
* use the information you learn in this portion of the class to *
% secure your own systems, not to attack others. *
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0. Today's threat model

— Last time: adversary with access to server

- Today: adversary in the network

- What can adversary in the network do?
— Observe packets
- Corrupt packets
- Inject packets
- Drop packets

- Some can be combated with techniques you already know
— TCP senders retransmit dropped packets
- Corrupt packets get dropped (at a router, usually), and thus

also retransmitted

- Need a plan, though, for carefully corrupted, injected, or
sniffed packets

— This lecture: focus on preventing an adversary in the network
from observing/tampering with contents of packets
— So NOT injecting new packets; that's next time

- Goals (policy)
1. Confidentiality: adversary cannot learn message contents
2. Integrity: adversary cannot tamper with message contents
- More accurately, if the adversary tampers with the message

contents, the sender and/or receiver will detect it.
- Result is known as a "secure channel"

1. Secure Channel Primitives
— Ensure confidentiality by encryption
- Encrypt(k, m) => c ; Decrypt(k, c) —>m

- k = key (secret; unknown to adversary, never transmitted)
- m = message
- € = ciphertext

- Property: given c, it is (virtually) impossible to obtain m

without knowing k
- Encryption alone does not provide integrity

— Adversary could change some bits in ciphertext

- Other mathematical reasons
- See http://security.stackexchange.com/questions/33569/

why—-do-you—-need-message—authentication-in-addition-to-
encryption
- Section 11.4.4 of the course textbook.
- Ensure integrity via message authentication codes (MAC)



- MAC(k, m) —> t

- k = key
- m = message
- t = output

Similar to hash functions. Difference: uses a key

— Alternate name: "keyed hash function"

— Adversary can't compute the MAC of a message; needs key.
(This is not true for regular hash functions)

— There are other subtle differences we won't get into. One
example: MACs are not always subject to the same
mathematical requirements as cryptographic hash functions.

2. Secure Channel Abstraction
- So far:
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[c]h] ———0- > m' = decrypt(k, c)
check MAC(k, m') == h

adversary intercepts [c|h] and tampers with it, receiver will
ow; MAC won't check out.

ide: Instead of [c|h], sender could send either of these:

c | MAC(c)

encrypt(k, m | MAC(k,m))

All provide level of integrity that we need. Different levels
of security against other types of attacks; see http://crypto.
stackexchange.com/questions/202/should-we-mac—-then-encrypt-or-
encrypt—then-mac if interested

oblem: adversary can intercept, and then retransmit message
replay" message)

lution: Include a sequence number in every message, and choose
new random sequence number for every connection

ender Receiver

encrypt(k, m | seq)

MAC(k, m | seq)

——————————— c| h-—————> m' | seq' = decrypt(k, c)
check MAC(k, m' | seq') == h

adversary intercepts message, can't replay in the same way
cause sender won't reuse sequence number
Assume sequence numbers don't wrap around
Aside: In reality, if there is a conversation that is long
enough that the sequence number space is exhausted, a session



is "renegotiated" between the sender and the receiver. (You
could, for instance, imagine that whenever a session is
renegotiated, the sender and receiver both change their keys.
In reality, they change a particular random value known as the
session ID.

- But if receiver is also sending to the sender (i.e., if they're
both sending), the receiver might use that sequence number. So
adversary could replay in the other direction (a "reflection"
attack)

— Solution: Use different keys in each direction

3. Key Exchange
- How do sender/receiver get keys in the first place? Can't just
send them in the clear in the beginning
- Diffie-Hellman key exchange
- Two parties: Alice and Bob ('"sender" and "receiver" before)
— Alice and Bob pick:
— a prime number p
- a "generator" g
— Aside: For g to be a generator, it has to be a "primitive
root modulo p". In 6.033, don't worry about that; we'll
always tell you g and p. If you want to know more about
primitive roots, take a cryptography, number theory, or
abstract algebra class.
— p and g don't need to be secret; assume adversary knows them
- Alice picks random number a (secret)
- Bob picks random number b (secret)
— Alice sends g™a mod p to Bob
— Bob sends g”b mod p to Alice
- Alice computes (g”b mod p) ~ a mod p = g”ab mod p
- Bob computes (g”a mod p) ~ b mod p = g”ab mod p
- Secret key = g™ab mod p
— Adversary can learn p, g, g™a mod p, g”b mod p. From this, one
cannot calculate g”ab mod p; you need to know either a or b to
do that.
— Trust me on that; won't prove it in 6.033
— Problem: Man-in-the-middle attack
— Adversary in middle of network intercepts (and responds to)
messages in both directions; Alice thinks she has established
a connection with Bob, and vice versa; in reality, they've both
established a connection with the adversary.

4. Cryptographic Signatures for Message Authentication

— Problem with the above is that messages aren't authenticated;
Alice doesn't know if she's really talking to Bob, and vice versa

- Before: shared key between the two parties. Known as symmetric
key cryptography.

— For signatures: public-key cryptography
- Each user generates a key pair: (PK, SK)
- PK is public: known to everyone, adversaries included



- SK is secret: known only to user

- PK and SK are related mathematically; we will not get into that
here
- RSA is a scheme that generates a key-pair for you.

- SK let's you sign messages; PK let's you verify signatures (but
NOT perform the signing)

— Primitives

- Sign(SK, m) —> sig.
- SK = secret key
- m = message
- sig = signature
- Verify(PK, m, sig) —> yes/no.
- PK = public key
- m = message
- sig = signature
- "yes/no" —> yes if signature is verified, no otherwise

- Notation: m_SK = {m, sig=Sign(SK, m)}. Given m_SK, and

corresponding PK, we can check that m was signed by someone with
SK

— This is all similar to MACs. Signatures don't require parties

to share a key

5. Key Distribution
— How do we distribute public keys? Lots of ideas

1.

3.

Alice remembers the key she used to communicate with Bob the

last time.

— Easy to implement, effective against subsequent
man-in-the-middle attacks

— Doesn't protect against MITM attacks the first time around,
doesn't allow parties to change keys

. Consult some authority that knows everyone's public key

- Doesn't scale (client asks authority for a PK for every new
name)

— Alice needs server's public key beforehand

Authority, but pre-compute responses. Authority creates signed

messages: {Bob, PK_bob}_ {SK_as}. Anyone can verify that the

authority signed this message, given PK_as. When Alice wants to

talk to Bob, she needs a signed message from the authority, but

it doesn't matter where this message comes from as long as the

signature checks out (i.e., Alice could retrieve the message

from a different server).

— This signed message is a certificate

— More scalable

- Certificate authorities bring up questions:

— Who should run the certificate authority?
— How does the browser get this list of CAs?
— Generally they come with the browser.
— How does the CA build its table of names <—> public keys?
- Have to agree on how to name principals, and need a mechanism
to check that a key corresponds to a name



- What if a CA makes a mistake?

- Need a way to revoke certificates

- Expiration date? Useful in long term, not for immediate
problems

— Publish certificate revocation list? Works in theory, not as
well in practice (CRLs sometimes incorrect, not always
updated immediately)
- Aside:

http://ssl-research.ccs.neu.edu/papers/Heartbleed-IMC. pdf

— Query online server to check certificate freshness? Not a

bad idea

— Alternative: avoid CAs by using public keys as names (protocols:
SPKI/SDSI). Works well for names that users don't have to
remember/enter

6. TLS:

A protocol that does all of this

- Lots of parts to this protocol
- Interesting one: how the connection is set up:

Client and server agree on some parameters:

- protocol version

- random sequence numbers

— cipher/compression scheme

Server sends client its certificate and list of CAs

Client verifies authenticity of server

Client sends secret value (the "pre_master_secret")
encrypted with the server's public key

Client and server compute master_secret using a pseudorandom
function and the pre_master_secret and two initial random
sequence numbers as input

Both compute a bunch of keys

- Client, server MAC keys; encrypt keys; others

Both send "finished" messages, which contain hashes of some of
the previous messages

- If this were a crypto class, we'd talk a lot about why each of
these parts of necessary

— This is not a crypto class. But it is worth noting how complex
this protocol is. Complexity comes from supporting lots of
options/protocols

7. Discussion
- Why isn't traffic encrypted by default?

Can be computationally expensive

Complex to implement

Wasn't a well-known thing for most users until relatively

recently

— Historically just applied to transactions that obviously need
to be secured. E.g., banking

Maybe we're at a point now where these arguments no longer

apply?

— Open vs. Closed Design



— Should system designers keep details of encrypt/decrypt/MAC/
etc. a secret?

- No: make the weakest practical assumptions about the
adversary. Assume they known the algorithms, but not the
secret keys.

— Also lets us reuse well-tested, prove algorithms
- Plus, if key is compromised, we can change it (unlike the
algorithms)



