6.033: Security - Underground Web Technologies
Lecture 24
Katrina LaCurts, lacurts@mit.edu

kokskokskokskkokokokokokokokskok sk ko kokkk sk ok sk ok kok ok ko sk kk sk sk ok skokskok sk sk k sk k sk sk sk sk skok sk ok sk kk sk k sk k sk skskokkok >k

* Disclaimer: This is part of the security section in 6.033. Only *
* use the information you learn in this portion of the class to *
% secure your own systems, not to attack others. *

skkokokokokokskkokokskokokkskokokskkokkskokok sk kokkskokok sk kokok sk kok sk skokok sk kok sk skokok sk kok sk skokok sk kok sk sk okok sk kokk sk ok

0. Introduction
- We've covered how to provide confidentiality, integrity, and
authenticity
- Today we're talking about anonymity
- Focus: Tor and Bitcoin
— Tor: network for users to remain anonymous
- Bitcoin: digitial currency system, which (possibly) provides
anonymity
- Both deal with interesting technical problems
- Both solve problems using things we've taught you (public keys,
signatures, etc.)
- Very popular as of late
— You'll see some threat models we haven't considered yet

1. Crypto review
- Two ways to encrypt data
- Symmetric—-key cryptography
— Alice and Bob share a key k, use it to encrypt and decrypt.
k is secret, known only to Alice and Bob
— Key-exchange is an issue, we typically use Diffie-Hellman key
exchange (L22)
- Generally very fast
— Public-key cryptography
— Alice and Bob each have their own key pair: (secret key,
public key)
— Alice's secret key is known ONLY to her; Bob's secret key is
known ONLY to him. Public keys are known to everyone
- To encrypt a message to Alice, Bob uses her public key. She
decrypts it with her secret key
— Aside: you saw public/secret keys used for signatures, where
signing was done with the xsecret* key and verification with
the public one
- Mathematically, signature keys have to be constructed
different than encryption keys, but that's out of scope
— Everyone can do an action using the public key, but only the
owner of the corresponding secret key can do the reverse
action
— In practice: use public-key cryptography to exchange an initial
secret, which is used to generate a symmetric key, which is
used to encrypt the rest of the conversation

- Happens in TLS

. Tor

Goal: hide some information from a network adversary
Secure channel model: encrypt data, so packets look like:

Alice ——— [to:bob|from:alice|XXXXXXXXX] ———> Bob

Adversaries still know that Alice and Bob are communicating, even

in this data (bc we can't encrypt packet headers). Concerning

if, e.g., Alice is communicating with a sensitive website

Tor will provide anonymity for Alice: Only she will know that

she's communicating with a particular server. The server won't

even know that Alice is talking to it

Starting idea: proxy server

— Alice sends data to proxy server. Header shows
“"To:Proxy|From:Alice"

- Proxy receives packet, rewrites header, sends packet to server
- Header: "To:Server|From:Proxy"

- Traffic back from server goes to proxy, who sends it back to
Alice (proxy keeps some state to do this)

— Adversary between Alice and proxy only knows that Alice
communicated with proxy; Adversary on network between proxy and
server only knows that proxy communicated with server

— Problem: Proxy knows that Alice is communicating with server

Better idea: A network of N proxies

- Alice chooses three (or more) proxies. Say P1, P2, P3

Traffic to server, S, goes

A -—> Pl -—> P2 ——> P3 ——> S

- Nodes on this path —— "circuit", in Tor parlance —— set up the
following state. Here, the "circuit ID" is 5.

A — P1 P2 P3 S
5:P1 5:A,P2 5:P1,P3 5:P2,S

— State at each node only gives previous and next hop. Allows
nodes to send traffic in forward and reverse directions
— Each node in circuit makes changes to packet header
A —— [from:A|to:P1l|cir:5|XXX] ———>
Pl — [from:P1|to:P2|cir:5|XXX] ——>
P2 — [from:P2|to:P3|cir:5|XXX] ——>
P3 — [from:P3|to:S|XXX] ——————— > S
— Problem: Adversary that can observe network between A and Pl
and between P3 and S will see the same packet data (even if
it's encrypted, it didn't change), and know that A is talking
to S.
Tor: Network of proxies + encryption
- Each proxy gets its own keypair
- Alice encrypts here data with all three keypairs

PK_A(circuit:K|PK_B(circuit:K|PK_C(circuit:K|XXX)))
— Each proxy strips off a layer of encryption

A — [to:P1|from:A|PK_P1l(circuit:K|PK_P2(circuit:K]|
PK_P3(circuit:K|XXX)))] -—>

Pl — [to:P2|from:P1|PK_P2(circuit:K|PK_P3(circuit:K|XXX))] —-—>

P2 — [to:P3|from:P2|PK_P3(circuit:K|XXX)] >

P3 — [to:S|from:P3|XXX] >

— Layers are stripped off like onions. Tor = The Onion Router
— Tor's encryption method is a bit different, but this is the
basic idea

3. Attacks on Tor
- Most popular attack is a traffic-correlation attack
- If the adversary can observe traffic into the entry node (P1)
and out of the exit node (P3), they will see different data in
the packets, but some things will remain preserved: packet
sizes (roughly), timing (roughly)
— Can use that info to correlate traffic, infer that A is
communicating with S
— Tor does not defend against this, but does have users use only
a few entry nodes, in the hopes that they are trusted
— Their argument is that having your traffic identified some of
the time is as bad as having it identified all of the time.
This approach means there is a nonzero chance that it will
kneverx be identified, unlike a set-up where users choose a
new random entry node each time.
- A few other attacks exist, mostly due to details of Tor that we
didn't cover in 6.033
— The Tor developers are very up front about what it protects
against: https://www.torproject.org/docs/faqg.html.en

4. Performance
— Tor can be slow at times, and latency is high
— Partly inevitable: traffic bounces all around the globe, plus
involves decryption at every step
- Partly due to some implementation details that are (possibly)
fixable

https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-
performance.pdf

5. Summary
— Technical problems you saw today and last lecture
- How to design a network where no one, except the sender, keeps
state linking sender and receiver, and yet a packet can be sent
from A to S

- How to create a decentralized digital currency, and in
particular, how to create a secure distributed public log.
These two technologies can get a bad rap, because they are often
used on the "underground web". Unfair! They solve cool problems
in networking/distributed systems.
Moreover, they give you a sense of how secure you are online.
Did you know, e.g., that even if you encrypt your packets,
adversaries can get all sorts of meta-information? Perhaps we
live in a world where our government collects that information?
Do we want them to know who we're talking to regardless of
whether we're doing something illegal?

