
6.033 Spring 2017
Lecture #1

• Complexity
• Modularity and abstraction
• Enforced modularity via client/server models

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

what is a system?
a set of interconnected components that has an

expected behavior observed at the interface with its
environment

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

http://mit.edu/6.033

Schedule

Fill out form for recitation assignments
link on home page

6.033 | spring 2017 | lacurts@mit.edu

http://mit.edu/6.033
mailto:lacurts@mit.edu?subject=

what is a system?
a set of interconnected components that has an

expected behavior observed at the interface with its
environment

what makes building systems
difficult?

complexity

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Pacemaker

Space Shuttle

Android

Linux Kernel

Large Hadron Collider

Windows Vista

Facebook

 0 10 20 30 40 50 60 70
Millions of Lines of Code

source:	http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Today’s Systems are Incredibly Complex

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

complexity limits what we can build and
causes a number of unforeseen issues

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

http://www.caida.org/research/topology/as_core_network/2014/

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

complexity limits what we can build and
causes a number of unforeseen issues

6.033 | spring 2017 | lacurts@mit.edu

by limiting what we can build, complexity makes it
difficult to achieve other properties, such as scalability,

fault-tolerance, security, performance, etc.

mailto:lacurts@mit.edu?subject=

how do we mitigate complexity?

6.033 | spring 2017 | lacurts@mit.edu

with design principles such as modularity and
abstraction

mailto:lacurts@mit.edu?subject=

how do we enforce modularity?

6.033 | spring 2017 | lacurts@mit.edu

one way is to use the client/server model

mailto:lacurts@mit.edu?subject=

Stub Clients and RPCs
Class	webBrowser

(on machine 1)
Class	webServer

(on machine 2)

		def	main():	
				html	=	browser_load_url(URL)	
				...

		def	browser_load_url(url):	
				msg	=	url	#	could	reformat	
				send	request	
				wait	for	reply	
				html	=	reply	#	could	reformat	
				return	html

		def	server_load_url():	
				...	
				return	html

		def	handle_server_load_url(url):	
				wait	for	request	
				url	=	request	
				html	=	server_load_url(URL)	
				reply	=	html	
				send	replystub stub

request

reply

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Challenges with RPCs

Client Server

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Challenges with RPCs

Client Serverinternet

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Challenges with RPCs

Client Serverinternet

load(“view.html?item”)

X
load(“view.html?item”)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Challenges with RPCs

Client Serverinternet

load(“buy.html?item&ccNo=xxx”)

X
load(“buy.html?item&ccNo=xxx”)

problem: just bought the same thing twice
6.033 | spring 2017 | lacurts@mit.edu

Challenges with RPCs

Client Serverinternet

load(“buy.html?UID”)

X
load(“buy.html?UID”)

client	|	UID	|	reply

state on server

replay results from table
instead of reprocessing

order

problem: server can still fail
6.033 | spring 2017 | lacurts@mit.edu

• Complexity  
 Comes from many sources, limits what we can build,  
 causes unforeseen issues; can be mitigated with  
 modularity and abstraction 

• Enforced modularity  
 One way to enforce modularity is with a client/server  
 model, where the two modules reside on different  
 machines and communicate with RPCs; network/  
 server failures are still an issue

next lecture: naming, which allows modules to  
 communicate

subsequent lectures: operating systems, which provide  
 modularity on a single machine

6.033 | spring 2017 | lacurts@mit.edu

