6.033 Spring 2017

| ecture #1

 Complexity
 Modularity and abstraction
* Enforced modularity via client/server models

mailto:lacurts@mit.edu?subject=

what is a system?

a set of interconnected components that has an
expected behavior observed at the interface with its
environment

mailto:lacurts@mit.edu?subject=

http:/mit.edu/6.033

Schedule

Tuesday Wednesday Thursday Friday

feb 6 feb 7 feb 8 feb 9 feb 10

REC 1: Worse is Better LEC 1: Coping with Complexity: | REC 2: Therac-25 TUT 1: What/How/Why
Reg day Enforced Modularity and Framework

Assigned: Hands-on DNS Client/server Organization

Assigned: Paper critique #1
First day of classes Reading: Book sections 1.1-1.5,
and 4.1-4.3

Fill out form for recitation assignments
link on home page

6.033 | spring 2017 | lacurts@mit.edu

http://mit.edu/6.033
mailto:lacurts@mit.edu?subject=

what is a system?

a set of interconnected components that has an
expected behavior observed at the interface with its
environment

what makes building systems
difficult?

complexity

mailto:lacurts@mit.edu?subject=

Today’s Systems are Incredibly Complex

Pacemaker 4 e e R -
Space Shuttle -
Android | | | | | |

Linux Kernel
Large Hadron Collider

Windows Vista

Facebook

0 10 20 30 40 50 60 70
Millions of Lines of Code

source: http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

complexity and
causes a number of unforeseen issues

mailto:lacurts@mit.edu?subject=

ARPANET LOGICAL MAP, MARCH 1977

POP-10 toc7600] - por-111 [rop-n OMPY [PoP-1t] [DEC-2050] | PLURIBUS]
- CcDC 3 - -
um MOFFETT SR e iunu Iu,unovs WPAFB For-%0 W POP-10
[ey ' . CCA RCCS
: RCC
| POP-1), [360767] LLL DEC-1099] [BoF-i1] o) 50 [7PDP-1I
POP-N POP-N . SPS-41
POP 10 POP- 11 .
HAWAN AMES IS SR 2 e POP-10 POP-N
aMES 15 | SRIS) T — POP 10 hoc PDP-10
PDP-10 IE.DP'"I POP- 1) a ECLI 49
XEROX fMaxc) POPI0]\ [ecuso =
pop-11) [Pop-10_] [PDF-I ANL oy o ' pen4o |CDCE600
: NOVA -800 ~ 88N 30 PDP-11
[pOP-10] : H-6180 1
DP-10 r P:RC MAXC2 =k = / | bEC COCTE00
STANFORD SUMEX YMSHARE s POP-11] COCB600
(3707195 SCOTT .l oec- POP-I1
POP- 10 Eawe MARVAR ~PDP-11
POP-10 GWE ‘ ' ok NYU
. CDCGS0 POP- 1)
POP-11 SPS- 41 . cocszo: . PDP- 10 NIVAC-1108
POP-1TN PDP-11
SCRL 8 PDP- 10
: ~ ABERDEEN
PLI e POP-11 360/44 SDAC Pee-n
360/91 st usc 3¢0740 NORSAR
POP-1 kel AR 360/40
NUC POP-1! POP-10| 360/40 ARPR 360/40
N POP:-)) PLURIBUS NBS
FPSAP-1208 T s ITR POP-1I LONOON
POP-1I 370-158 RAND ; , ; ; 0P-9
DP-1 _ POP - 11] | PDP-15] POl ey POP-T
[pEc-2040] -10 SOPN | 8-4700] B
POP- 10 S {Fora xGP PDP -1} — 55575
PDP- 10 & o EGLIN 50703
Istz2 AFWL TEXAS GUNTER EGLIN /N PENTAGON cf: prveg
PDP 11 POP-11 L
O IMP A PLURIBUS IMP CDC6600 BS5CO ggg:;g%
TP ATELLITE CIR
() “» SATELLITE CIRCUIT . EOCTRD0

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE ,NO CLAIM CAN BE MADE FOR ITS ACCURACY) *

NAMES SHOWN ARE IMP NAMES.NOT INECESSARILY) HOST NAMES

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

CAIDA’s IPv4 AS Core
AS-level Internet Graph

Archipelago January 2014

4324

“©2

Number of netghbors (degree)

Copyright © 2014 UC Regents. All rights reserved.

http://www.caida.org/research/topology/as_core_network/2014/

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

complexity and
causes a number of unforeseen issues

by limiting what we can build, complexity makes it
difficult to achieve other properties, such as scalabillity,
fault-tolerance, security, performance, etc.

mailto:lacurts@mit.edu?subject=

how do we mitigate complexity?

with design principles such as and

mailto:lacurts@mit.edu?subject=

how do we enforce modularity?

one way Is to use the

mailto:lacurts@mit.edu?subject=

Stub Clients and RPCs

: Class webServer
C1as(;osn r‘;l\’aec?liBnréqyser‘ : (on machine 2)
def main(): § def server_load url():

html = browser_load url(URL) e
return html

|

def browser_load_url(url): pquest def handle_server_load_url(url):
msg = url # could reformat — wait for request
send request : url = request
wait for reply — html = server_load url(URL)
html = reply # could reformat reply reply = html
return html : send reply

mailto:lacurts@mit.edu?subject=

Client

Challenges with RPCs

Server

mailto:lacurts@mit.edu?subject=

Challenges with RPCs

Client| = > internet < Server

mailto:lacurts@mit.edu?subject=

Challenges with RPCs

C
| 4

B load(“view.html?item”)
B load(“view.html?item”}

v

mailto:lacurts@mit.edu?subject=

Client

Challenges with RPCs

>

internet

load(

“buy.html?item&cho=XXX”)

Server

load(

v

X_

“buy.html?item&cho=XXX”)

v

<4

v

\4

problem: just bought the same thing twice

Client

Challenges with RPCs

< internet ' >

load(“ng.html?UID”)

Server

state on server

—| | client | UID | reply

X

load(“bgz.html?UID”)

- replay results from table
instead of reprocessing

v

order

problem: server can still fall

 Complexity
Comes from many sources, limits what we can build,
causes unforeseen issues; can be mitigated with
modularity and abstraction

 Enforced modularity
One way to enforce modularity is with a client/server
model, where the two modules reside on different
machines and communicate with RPCs; network/
server failures are still an issue

next lecture: naming, which allows modules to
communicate

subsequent lectures: operating systems, which provide
modularity on a single machine

