
6.033 Spring 2017
Lecture #1

• Complexity 
• Modularity and abstraction 
• Enforced modularity via client/server models
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what is a system?
a set of interconnected components that has an 

expected behavior observed at the interface with its 
environment
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http://mit.edu/6.033

Schedule

Fill out form for recitation assignments
link on home page
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what is a system?
a set of interconnected components that has an 

expected behavior observed at the interface with its 
environment

what makes building systems 
difficult?

complexity
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Pacemaker

Space Shuttle

Android

Linux Kernel

Large Hadron Collider

Windows Vista

Facebook
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Millions of Lines of Code

source:	http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Today’s Systems are Incredibly Complex
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complexity limits what we can build and 
causes a number of unforeseen issues
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http://www.caida.org/research/topology/as_core_network/2014/
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complexity limits what we can build and 
causes a number of unforeseen issues
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by limiting what we can build, complexity makes it 
difficult to achieve other properties, such as scalability, 

fault-tolerance, security, performance, etc.
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how do we mitigate complexity?
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with design principles such as modularity and 
abstraction
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how do we enforce modularity?
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one way is to use the client/server model
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Stub Clients and RPCs
Class	webBrowser

(on machine 1)
Class	webServer

(on machine 2)

		def	main():	
				html	=	browser_load_url(URL)	
				...

		def	browser_load_url(url):	
				msg	=	url	#	could	reformat	
				send	request	
				wait	for	reply	
				html	=	reply	#	could	reformat	
				return	html

		def	server_load_url():	
				...	
				return	html

		def	handle_server_load_url(url):	
				wait	for	request	
				url	=	request	
				html	=	server_load_url(URL)	
				reply	=	html	
				send	replystub stub

request

reply
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Challenges with RPCs

Client Server
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Challenges with RPCs

Client Serverinternet
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Challenges with RPCs

Client Serverinternet

load(“view.html?item”)

X
load(“view.html?item”)
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Challenges with RPCs

Client Serverinternet

load(“buy.html?item&ccNo=xxx”)

X
load(“buy.html?item&ccNo=xxx”)

problem: just bought the same thing twice
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Challenges with RPCs

Client Serverinternet

load(“buy.html?UID”)

X
load(“buy.html?UID”)

client	|	UID	|	reply

state on server

replay results from table 
instead of reprocessing 

order

problem: server can still fail
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• Complexity  
     Comes from many sources, limits what we can build,  
     causes unforeseen issues; can be mitigated with  
     modularity and abstraction 

• Enforced modularity  
     One way to enforce modularity is with a client/server  
     model, where the two modules reside on different  
     machines and communicate with RPCs; network/  
     server failures are still an issue

next lecture: naming, which allows modules to         
                      communicate

subsequent lectures: operating systems, which provide  
                                     modularity on a single machine
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