6.033 Spring 2017

| ecture #1

 Complexity
 Modularity and abstraction
* Enforced modularity via client/server models
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what is a system?

a set of interconnected components that has an
expected behavior observed at the interface with its
environment
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http:/mit.edu/6.033

Schedule

Tuesday Wednesday Thursday Friday

feb 6 feb 7 feb 8 feb 9 feb 10

REC 1: Worse is Better LEC 1: Coping with Complexity: | REC 2: Therac-25 TUT 1: What/How/Why
Reg day Enforced Modularity and Framework

Assigned: Hands-on DNS Client/server Organization

Assigned: Paper critique #1
First day of classes Reading: Book sections 1.1-1.5,
and 4.1-4.3

Fill out form for recitation assignments
link on home page
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what is a system?

a set of interconnected components that has an
expected behavior observed at the interface with its
environment

what makes building systems
difficult?

complexity
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Today’s Systems are Incredibly Complex
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source: http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
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complexity and
causes a number of unforeseen issues
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ARPANET LOGICAL MAP, MARCH 1977
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(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST
INFORMATION OBTAINABLE ,NO CLAIM CAN BE MADE FOR ITS ACCURACY) *

NAMES SHOWN ARE IMP NAMES.NOT INECESSARILY) HOST NAMES
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CAIDA’s IPv4 AS Core
AS-level Internet Graph

Archipelago January 2014
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Copyright © 2014 UC Regents. All rights reserved.

http://www.caida.org/research/topology/as_core_network/2014/
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complexity and
causes a number of unforeseen issues

by limiting what we can build, complexity makes it
difficult to achieve other properties, such as scalabillity,
fault-tolerance, security, performance, etc.
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how do we mitigate complexity?

with design principles such as and
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how do we enforce modularity?

one way Is to use the
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Stub Clients and RPCs

: Class webServer
C1as(;osn r‘;l\’aec?liBnréqyser‘ : (on machine 2)
def main(): § def server_load url():

html = browser_load url(URL) e
return html

|

def browser_load_url(url): pquest def handle_server_load_url(url):
msg = url # could reformat — wait for request
send request : url = request
wait for reply — html = server_load url(URL)
html = reply # could reformat reply reply = html
return html : send reply
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Client

Challenges with RPCs

Server
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Challenges with RPCs

Client| = > internet < Server



mailto:lacurts@mit.edu?subject=

Challenges with RPCs

C
| 4

B load(“view.html?item”)
B load(“view.html?item”}

v
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Client

Challenges with RPCs

>

internet

load(

“buy.html?item&cho=XXX”)

Server

load(

v

X_

“buy.html?item&cho=XXX”)

v

<4

v

\4

problem: just bought the same thing twice




Client

Challenges with RPCs

< internet ' >

load(“ng.html?UID”)

Server

state on server

—| | client | UID | reply

X

load(“bgz.html?UID”)

- replay results from table
instead of reprocessing

v

order

problem: server can still fall



 Complexity
Comes from many sources, limits what we can build,
causes unforeseen issues; can be mitigated with
modularity and abstraction

 Enforced modularity
One way to enforce modularity is with a client/server
model, where the two modules reside on different
machines and communicate with RPCs; network/
server failures are still an issue

next lecture: naming, which allows modules to
communicate

subsequent lectures: operating systems, which provide
modularity on a single machine



