
6.033 Spring 2017
Lecture #3

• Operating systems
• Virtual memory
• OS abstractions

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Lingering Problem

Client Serverinternet

load(amazon.com/buy.html?chocolate)

what if we don’t want our modules to be on entirely
separate machines? how can we enforce

modularity on a single machine?

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

operating systems: enforce
modularity on a single machine

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

#include	<stdio.h>	

#include	<unistd.h>	

void	(*m)();	

void	f()	{	

		printf("child	is	running	m	=	%p\n",	m);	

}	

int	main()	{	

		m	=	f;	

		if	(fork()	==	0)	{	

				printf("child	has	started\n");	

				int	i;	

				for	(i	=	0;	i	<	15;	i++)	{	

						sleep(1);	

						(*m)();	

				}	

		}	

		else	{	

				printf("parent	has	started\n");	

				sleep	(5);	

				printf("parent	is	running;	let's	write	to	m	=	%p\n",	m);	

				m	=	0;	

				printf("parent	tries	to	invoke	m	=	%p\n",	m);	

				(*m)();	

				printf("parent	is	still	alive\n");	

		}	

}

m is a pointer to a function
that returns void

Parent: overwrite
m and then call it

Child: every second for
15 seconds, call m

set m	to point to f

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

operating systems: enforce
modularity on a single machine via

virtualization

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtualize
communication

links

virtualize
processors

virtualize memory

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

today’s goal: virtualize memory so that programs cannot refer
to each others’ memory

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

assume that they
don’t need to

(for today)

assume one program
per CPU
(for today)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Multiple Programs
CPU1 main memory

instructions	for	
program1

CPU2

(used by program1)

(used by program2)
instructions	for	

program2

data	for	program1

data	for	program2

problem: no boundaries

232-1

0

31 0

EIP

31 0

EIP

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Solution: Virtualize Memory

CPU1

main memory

(used by program1)
232-1

0

31 0

EIP

MMU

table	for	program1

table	for	program2

instructions	for	
program1

instructions	for	
program2

data	for	program1

data	for	program2

virtual
address

physical
memory

virtual
address

0

0

232-1

232-1

MMU uses program1’s table to translate
the virtual address to a physical address

physical
address

6.033 | spring 2017 | lacurts@mit.edu

Storing the Mapping

naive method: store every mapping; virtual address acts as
an index into the table

0xbe26dc9	
0xc090f81c	
0xb762a572	
0x5dcc90ee	

…

0x00000000	
0x00000001	
0x00000002	
0x00000003	

…

= 16GB to store the table

232 entries

32 bits per entry

6.033 | spring 2017 | lacurts@mit.edu

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits* per entry
= 4MB to store the table

* you’ll see why it’s not 20 bits in a second

6.033 | spring 2017 | lacurts@mit.edu

Using Page Tables

CPU1(used by program1)

0x00002148
31 0

EIP

MMU
0x00002148

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

table for program1

…

0x00003
0x00000
0x00004
0x00005

(exists in main memory)

index into
page table

physical page number: 0x00004

0x00004148 to main
memory

6.033 | spring 2017 | lacurts@mit.edu

Page Table Entries

physical	page	number

1231 11 0

page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

present (P) bit: is the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address?

6.033 | spring 2017 | lacurts@mit.edu

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits per entry
= 4MB to store the table

6.033 | spring 2017 | lacurts@mit.edu

problem: 4MB is still a fair amount of space

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits per entry
= 4MB to store the table

6.033 | spring 2017 | lacurts@mit.edu

solution: page the page table

Page Table Entries

physical	page	number

1231 11 0

page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

present (P) bit: is the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address?

user/supervisor (U/S) bit: does the program have
access to this address?

6.033 | spring 2017 | lacurts@mit.edu

kernel manages page faults and
other interrupts

6.033 | spring 2017 | lacurts@mit.edu

operating systems: enforce
modularity on a single machine via

virtualization and abstraction

6.033 | spring 2017 | lacurts@mit.edu

• Operating systems  
 Operating systems enforce modularity on a single  
 machine via virtualization and abstraction 

• Virtual memory  
 Virtualizing memory prevents programs from referring  
 to (and corrupting) each other’s memory. The MMU  
 translates virtual addresses to physical addresses  
 using page tables  

• OS abstractions  
 The OS presents abstractions for devices via system  
 calls, which are implemented with interrupts. Using  
 interrupts means the kernel directly accesses the  
 devices, not the user

6.033 | spring 2017 | lacurts@mit.edu

Multiple Programs
CPU1 main memory

for	(;;)	{	
			next	instruction	
}

CPU2

for	(;;)	{	
			next	instruction	
}

(used by program1)

(used by program2)

instructions	for	
program1

instructions	for	
program2

data	for	program1

data	for	program2

232-1

0

6.033 | spring 2017 | lacurts@mit.edu

