6.033 Spring 2017
| ecture #3

* QOperating systems
* Virtual memory
 (OS abstractions


mailto:lacurts@mit.edu?subject=

Lingering Problem

— - Server
Client| &< internet

_load(amazon. com/buy.htmi ?chocola’ceﬁ)>

ha N g m to be on entire

| ’ t our modules

if we don't wa

; tseparate machines? how can we fanforce
modularity on a single machine?


mailto:lacurts@mit.edu?subject=

operating systems: enforce
modularity on a single machine


mailto:lacurts@mit.edu?subject=

#include <stdio.h>
#include <unistd.h>

m IS a pointer to a function
that returns void

void (*m)(); <

void f() {
printf( s M);
}

int main() { :

m=f; < setm to pointto f
(fork() == @) {

Prin?f( )s

(i = 0; i< 155 irs) { Child: every second for
MO 15 seconds, call m
}

{
printf( )5

sleep (5); :
print( »ms | Parent: overwrite

m = 0; .
printf , M) m and then call it

(*m) () ;
printf( )5



mailto:lacurts@mit.edu?subject=

operating systems: enforce
modularity on a single machine via
virtualization


mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an eftective operating system

1. programs shouldn’t be able to refer to

(and corrupt) each others’ memory ==  virtualize memory
virtualize
2. programs should be able to 5 communication

communicate )
links

3. programs should be able to share a virtualize
CPU without one program halting the —l
processors
progress of the others


mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an eftective operating system

1. programs shouldn’t be able to refer to

(and corrupt) each others’ memory —

2. programs should be able to - assume that they

communicate don’'t need to
(for today)

3. programs should be able to share a assume one program
CPU without one program halting the —l oer CPU
progress of the others (for today)

today’s goal: so that programs cannot refer

to each others’ memory


mailto:lacurts@mit.edu?subject=

Multiple Programs

CPUq (used by programy)

EIP

31 ()

CPU> (used by program,)

EIP

31 (7

main memory
232-1

instructions for
program;

instructions for
program;

data for program

data for program;

problem: no boundaries

6.033 | spring 2017 | lacurts@mit.edu


mailto:lacurts@mit.edu?subject=

Solution: Virtualize Memory

virtual physica|
CPU, (usedbyprogrami) MMU address memory
232-1 232_1
instructions for
virtual physical program;
address address
o data for program;
232-1

instructions for
program;

5 data for program;
MMU uses programs’s table to translate

the virtual address to a physical address

R » | table for program:

table for program;

main memory



Storing the Mapping

naive method: store every mapping; virtual address acts as
an index into the table

OX00000000 » OXxbe26dc9

OX00000001 »OXCcO90T81cC

OX00000002 »1Oxb762a572 | |232 entries
OX00000003 > OX5dcc90ee

32 bits per entry
= 16GB to store the table




Storing the Mapping

space-efficient mapping: map to IN memory

one page is (typically) 212 bits of memory.

232-12 = P20 antries

32 bits™ per entry
= 4MB to store the table

*you'll see why it's not 20 bits in a second



Using Page Tables

CPU (used by programy) MMU

1| 0x00002148 0x00002148 —~0x00004148 +— .~ °"
31 %)

table for programj

: 9x00002 .
(top 20 bits) . OX00003
5
offset: 0x148 a5, || @x00000
(bottom 12 bits) W Ox00004
physical page number: 0x00004 OX00005

(exists in main memory)



Page lable Entries

page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

31 12 11 0

physical page number .IIIIIII I

s the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address”



Storing the Mapping

space-efficient mapping: map to IN memory

one page is (typically) 212 bits of memory.

232-12 = P20 antries

32 bits per entry
= 4MB to store the table

problem: 4MB is still a fair amount of space



Storing the Mapping

space-efficient mapping: map to IN memory

one page is (typically) 212 bits of memory.

232-12 = P20 antries

32 bits per entry
= 4MB to store the table

solution: page the page table



Page lable Entries

page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

31 12 11 0

physical page number .IIIIII I

s the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address”

user/supervisor (U/S) bit: does the program have
access to this address?



kernel manages page faults and
other interrupts



operating systems: enforce
modularity on a single machine via
virtualization and abstraction



 Operating systems
Operating systems enforce modularity on a single
machine via virtualization and abstraction

* Virtual memory
Virtualizing memory prevents programs from reterring
to (and corrupting) each other's memory. The MMU
translates virtual addresses to physical addresses
using page tables

 OS abstractions
The OS presents abstractions for devices via system
calls, which are implemented with interrupts. Using
interrupts means the kernel directly accesses the
devices, not the user



Multiple Programs

CPU; (used by programy) main memory
232-1

instructions
program;

for (5;) A
next instruction

}

instructions for
CPU2 (used by programy) program;

for (55) {

next instruction data for program

}

data for program;

6.033 | spring 2017 | lacurts@mit.edu



