6.033 Spring 2017
| ecture #5

e Threads
e Condition Variables
* Preemption


mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an eftective operating system

1. programs shouldn’t be able to refer to

(and corrupt) each others’ memory — virtual memory
2. programs_shtould be able to ™ bounded buffers
communicate (virtualize communication links)
3. programs should be able to share a assume one program
CPU without one program halting the —l oer CPU

progress of the others


mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an eftective operating system

1. programs shouldn’t be able to refer to _
(and corrupt) each others’ memory — virtual memory

2. programs should be able to -

: bounded buffers
communicate

(virtualize communication links)

3. programs should be able to share a
CPU without one program halting the —l

progress of the others (virtualize processors)

today’s goal: use to allow multiple programs to share a
CPU


mailto:lacurts@mit.edu?subject=

thread: a virtual processor

thread API:
suspend(): save state of current threac

{0 memory
resume(): restore state from memory


mailto:lacurts@mit.edu?subject=

send(bb, message):
acquire(bb.lock)
while .1n - .out ==
release(bb.lock)
acquire(bb.lock)
.buf[bb.1in mod N] <- message
.1n <- .in + 1
release(bb.lock)
return


mailto:lacurts@mit.edu?subject=

send(bb, message):
acquire(bb.lock)

while .1n - .out ==
release(bb.lock)
yield()

acquire(bb.lock)
.buf[bb.in mod N] <- message
.1n <- .1n + 1
release(bb.lock)
return


mailto:lacurts@mit.edu?subject=

yield():
acquire(t lock)

id = cpus[CPU].thread

'id].state = RUNNABLE Suspend
1d].sp = 5P current thread
id].ptr = PTR

do: _ Ch N

id = (id + 1) mod N COSE NEW

while [id].state != RUNNABLE threaa

SP = [id].sp ]

PTR = [id].ptr Resume new

cpus[CPU].thread = id

release(t lock)


mailto:lacurts@mit.edu?subject=

condition variables: let threads walit for
events, and get notified when they occur

condition variable API.

wait(cv): vyield processor and wait to
be notified of cv

notify(cv): notify waiting threads of cv


mailto:lacurts@mit.edu?subject=

send(bb, message):
acquire(bb.lock)
while .1n - .out ==
release(bb.lock)
wait(bb.not full)
acquire(bb.lock)
.buf[bb.in mod N] <- message
.1n <- .in + 1
release(bb.lock)
notify(bb.not empty)
return

(threads in receive() will
wait on bb.not_empty and
notify of bb.not_full)

problem: [ost notity


mailto:lacurts@mit.edu?subject=

condition variable API.
wait(cv,lock) : yield processor, release
lock, walit to be notified
of cv
notify(cv): notify waiting threads of cv


mailto:lacurts@mit.edu?subject=

send(bb, message):

acquire(bb.lock)

while .1n - .out == N:
wait(bb.not full, .lock)
.buf[bb.in mod N] <- message
.1n <- .in + 1

release(bb.lock)

notify(bb.not empty)

return


mailto:lacurts@mit.edu?subject=

wait(cv, lock):

acquire(t lock)

release(lock)

id = cpus|[CPU].thread
‘id].cv = cv
1d].state = WAITING
yield wait() -
release(t lock)
acquire(lock)

will be different
than yield()




wait(cv, lock):
acquire(t lock)
release(lock)
id = cpus[CPU].thread

[1d.

1d.

yield wait() -

.CV = CV

.State = WAITING

will be different

release(t lock)
acquire(lock)

notify(cv):

acquire(t lock)
for id = 0 to N-1:

if

id].cv ==
1d].state
[id].state =

release(t lock)

than yield()

cv &&
== WAITING:
RUNNABLE



yield wait(): // called by wait()

acquire(t lock)

id = cpus[CPU].thread
‘id].state = RUNNABLE
id].sp = SP

id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

release(t lock)

problem: wait() holds t lock



yield wait(): // called by wait()

id = cpus[CPU].thread
'id].state = RUNNABLE
id].sp = SP

id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

problem: current thread’s state shouldn’t be

RUNNA

S




yield wait(): // called by wait()

id = cpus[CPU].thread
[id].sp = SP
[id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

problem: deadlock (wait() holds t lock)



yield wait(): // called by wait()

id = cpus[CPU].thread
[id].sp = SP
[id].ptr = PTR

do:
id = (id + 1) mod N
release(t lock)
acquire(t lock)

while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

problem: stack corruption



yield wait(): // called by wait()

id = cpus[CPU].thread
[id].sp = SP
[id].ptr = PTR

SP = cpus[CPU].stack

do:
id = (id + 1) mod N
release(t lock)
acquire(t lock)

while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id



preemption: forcibly interrupt threads

timer interrupt():
push PC
push registers
yield()
pop registers
pop PC

problem: what if timer interrupt occurs while CPU is
running yield() or yield wait()"”



preemption: forcibly interrupt threads

timer interrupt():
push PC
push registers
yield()
pop registers
pop PC

solution: hardware mechanism to disable interrupts



* Threads
Virtualize a processor so that we can share it among
programs. vyield() allows the kernel to suspend the
current thread and resume another.

 Condition Variables
Provide a more efticient API for threads, where they
wait for an event and are notified when it occurs.
wait() requires a new version of yield(), yield_wait().

* Preemption
Forces a thread to be interrupted so that we don't have
to rely on programmers correctly using yield().
Requires a special interrupt and hardware support to
disable other interrupts.



Enforcing Modularity via Virtualization

in order to enforce modularity + build an eftective operating system

1. programs shouldn’t be able to refer to _
(and corrupt) each others’ memory — virtual memory

2. programs should be able to -

: bounded buffers
communicate

(virtualize communication links)

3. programs should be able to share a

. . threads
CPU without one program halting the —l irtualize processors)
progress of the others



