
6.033 Spring 2017
Lecture #5

• Threads
• Condition Variables
• Preemption

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers

assume one program
per CPU

(virtualize communication links)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

today’s goal: use threads to allow multiple programs to share a
CPU

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers

threads
(virtualize processors)

(virtualize communication links)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

thread: a virtual processor

thread API:
		suspend():	

		resume(): restore state from memory

save state of current thread
to memory

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

		send(bb,	message):	
				acquire(bb.lock)	
				while	bb.in	-	bb.out	==	N:	
								release(bb.lock)	
								acquire(bb.lock)	
				bb.buf[bb.in	mod	N]	<-	message	
				bb.in	<-	bb.in	+	1	
				release(bb.lock)	
				return

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

		send(bb,	message):	
				acquire(bb.lock)	
				while	bb.in	-	bb.out	==	N:	
								release(bb.lock)	
								yield()	
								acquire(bb.lock)	
				bb.buf[bb.in	mod	N]	<-	message	
				bb.in	<-	bb.in	+	1	
				release(bb.lock)	
				return

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

		yield():	
				acquire(t_lock)	

				id	=	cpus[CPU].thread	
				threads[id].state	=	RUNNABLE	
				threads[id].sp	=	SP	
				threads[id].ptr	=	PTR	

				do:	
						id	=	(id	+	1)	mod	N	
				while	threads[id].state	!=	RUNNABLE	

				SP	=	threads[id].sp	
				PTR	=	threads[id].ptr	
				threads[id].state	=	RUNNING	
				cpus[CPU].thread	=	id	

				release(t_lock)

Suspend
current thread

Choose new
thread

Resume new
thread

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

condition variables: let threads wait for
events, and get notified when they occur

condition variable API:
		wait(cv):	

		notify(cv): notify waiting threads of cv

yield processor and wait to
be notified of cv

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

(threads in receive() will
wait on bb.not_empty and

notify of bb.not_full)

		send(bb,	message):	
				acquire(bb.lock)	
				while	bb.in	-	bb.out	==	N:	
								release(bb.lock)	
								wait(bb.not_full)	
								acquire(bb.lock)	
				bb.buf[bb.in	mod	N]	<-	message	
				bb.in	<-	bb.in	+	1	
				release(bb.lock)	
				notify(bb.not_empty)	
				return

problem: lost notify
6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

condition variable API:
		wait(cv,lock):	

			
		notify(cv): notify waiting threads of cv

yield processor, release
lock, wait to be notified
of cv

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

		send(bb,	message):	
				acquire(bb.lock)	
				while	bb.in	-	bb.out	==	N:	
							wait(bb.not_full,	bb.lock)	
				bb.buf[bb.in	mod	N]	<-	message	
				bb.in	<-	bb.in	+	1	
				release(bb.lock)	
				notify(bb.not_empty)	
				return

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

		wait(cv,	lock):	
				acquire(t_lock)	
				release(lock)	
				id	=	cpus[CPU].thread	
				threads[id].cv	=	cv	
				threads[id].state	=	WAITING	
				yield_wait()	
				release(t_lock)	
				acquire(lock)

will be different
than yield()

6.033 | spring 2017 | lacurts@mit.edu

		wait(cv,	lock):	
				acquire(t_lock)	
				release(lock)					
				id	=	cpus[CPU].thread	
				threads[id].cv	=	cv	
				threads[id].state	=	WAITING	
				yield_wait()	
				release(t_lock)	
				acquire(lock)

will be different
than yield()

		notify(cv):	
				acquire(t_lock)	
				for	id	=	0	to	N-1:	
						if	threads[id].cv	==	cv	&&	
									threads[id].state	==	WAITING:	
								threads[id].state	=	RUNNABLE	
				release(t_lock)

6.033 | spring 2017 | lacurts@mit.edu

		yield_wait():	//	called	by	wait()	
				acquire(t_lock)	

				id	=	cpus[CPU].thread	
				threads[id].state	=	RUNNABLE	
				threads[id].sp	=	SP	
				threads[id].ptr	=	PTR	

				do:	
						id	=	(id	+	1)	mod	N	
				while	threads[id].state	!=	RUNNABLE	

				SP	=	threads[id].sp	
				PTR	=	threads[id].ptr	
				threads[id].state	=	RUNNING	
				cpus[CPU].thread	=	id	

				release(t_lock)

problem: wait() holds t_lock
6.033 | spring 2017 | lacurts@mit.edu

		yield_wait():	//	called	by	wait()	

				id	=	cpus[CPU].thread	
				threads[id].state	=	RUNNABLE	
				threads[id].sp	=	SP	
				threads[id].ptr	=	PTR	

				do:	
						id	=	(id	+	1)	mod	N	
				while	threads[id].state	!=	RUNNABLE	

				SP	=	threads[id].sp	
				PTR	=	threads[id].ptr	
				threads[id].state	=	RUNNING	
				cpus[CPU].thread	=	id

problem: current thread’s state shouldn’t be RUNNABLE

6.033 | spring 2017 | lacurts@mit.edu

		yield_wait():	//	called	by	wait()	

				id	=	cpus[CPU].thread	
				threads[id].sp	=	SP	
				threads[id].ptr	=	PTR	

				do:	
						id	=	(id	+	1)	mod	N	
				while	threads[id].state	!=	RUNNABLE	

				SP	=	threads[id].sp	
				PTR	=	threads[id].ptr	
				threads[id].state	=	RUNNING	
				cpus[CPU].thread	=	id

problem: deadlock (wait() holds t_lock)

6.033 | spring 2017 | lacurts@mit.edu

		yield_wait():	//	called	by	wait()	

				id	=	cpus[CPU].thread	
				threads[id].sp	=	SP	
				threads[id].ptr	=	PTR	

				do:	
						id	=	(id	+	1)	mod	N	
						release(t_lock)	
						acquire(t_lock)	
				while	threads[id].state	!=	RUNNABLE	

				SP	=	threads[id].sp	
				PTR	=	threads[id].ptr	
				threads[id].state	=	RUNNING	
				cpus[CPU].thread	=	id

problem: stack corruption

6.033 | spring 2017 | lacurts@mit.edu

		yield_wait():	//	called	by	wait()	

				id	=	cpus[CPU].thread	
				threads[id].sp	=	SP	
				threads[id].ptr	=	PTR	
				SP	=	cpus[CPU].stack	

				do:	
						id	=	(id	+	1)	mod	N	
						release(t_lock)	
						acquire(t_lock)	
				while	threads[id].state	!=	RUNNABLE	

				SP	=	threads[id].sp	
				PTR	=	threads[id].ptr	
				threads[id].state	=	RUNNING	
				cpus[CPU].thread	=	id

6.033 | spring 2017 | lacurts@mit.edu

		timer_interrupt():	
				push	PC	
				push	registers	
				yield()	
				pop	registers	
				pop	PC

problem: what if timer interrupt occurs while CPU is
running yield() or yield_wait()?

preemption: forcibly interrupt threads

6.033 | spring 2017 | lacurts@mit.edu

		timer_interrupt():	
				push	PC	
				push	registers	
				yield()	
				pop	registers	
				pop	PC

preemption: forcibly interrupt threads

solution: hardware mechanism to disable interrupts

6.033 | spring 2017 | lacurts@mit.edu

• Threads  
 Virtualize a processor so that we can share it among  
 programs. yield() allows the kernel to suspend the  
 current thread and resume another.  

• Condition Variables  
 Provide a more efficient API for threads, where they  
 wait for an event and are notified when it occurs.  
 wait() requires a new version of yield(), yield_wait(). 

• Preemption 
 Forces a thread to be interrupted so that we don’t have  
 to rely on programmers correctly using yield().  
 Requires a special interrupt and hardware support to  
 disable other interrupts.

6.033 | spring 2017 | lacurts@mit.edu

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers

threads
(virtualize processors)

(virtualize communication links)

6.033 | spring 2017 | lacurts@mit.edu

