6.033 Spring 2017

Lecture #9

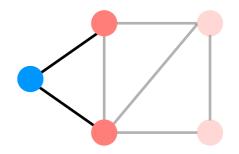
- Scalable Routing
- Policy Routing
- · BGP

Internet of Problems

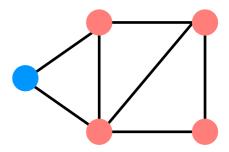
How do we **route** (and address) scalably, while dealing with issues of policy and economy?

How do we **transport** data scalably, while dealing with varying application demands?

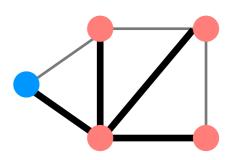
How do we **adapt** new applications and technologies to an inflexible architecture?


goal of a routing protocol: allow each switch to know, for every node dst in the network, a route to dst

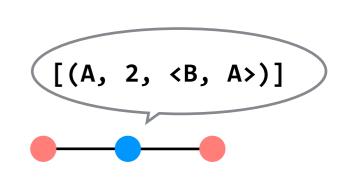
goal of a routing protocol: allow each switch to know, for every node dst in the network, a minimum-cost route to dst

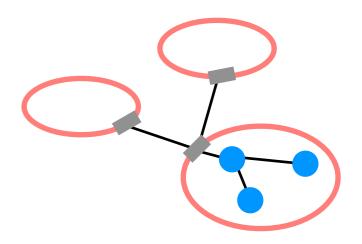

goal of a routing protocol: build a routing table at each switch, such that routing_table[dst] contains a minimum-cost route to dst

Distributed Routing


 Nodes learn about their neighbors via the HELLO protocol

2. Nodes learn about other reachable nodes via advertisements

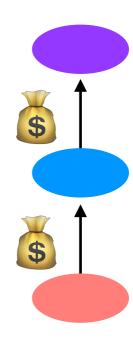

3. Nodes determine the minimum-cost routes (of the routes they know about)


problem: neither distance-vector nor link-state routing will scale to the size of the Internet

Scalable Routing

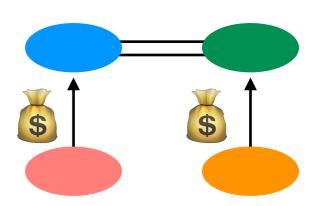
1. **path-vector routing:** advertisements include the path, to better detect routing loops

2. hierarchy of routing: route between ASes, and then within an AS



3. **topological addressing:** assign addresses in contiguous blocks to make advertisements smaller

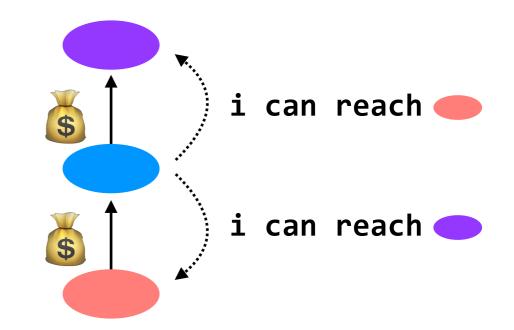
problem: ASes also need a means to implement policy


Common AS Relationships

customer/provider ("transit")
customer pays provider for transit

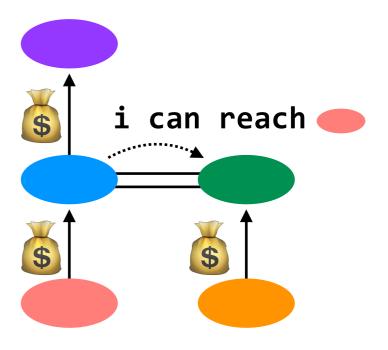
peers

peers allow (free*) mutual access to each other's customers


^{*}as long as the amount of traffic in each direction is roughly equal

Export Policies

goal: make money

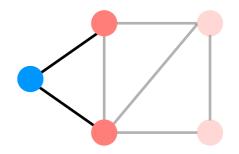

customer/provider ("transit")

providers tell everyone about themselves their customers, and tell their customers about everyone

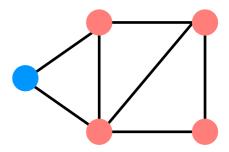
peers

peers tell each other about their customers

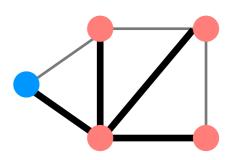
Import Policies


goal: make money

customer > peer > provider


(and then a variety of other attributes when this rule isn't sufficient)

Distributed Routing


 Nodes learn about their neighbors via the HELLO protocol

2. Nodes learn about other reachable nodes via advertisements

3. Nodes determine the minimum-cost routes (of the routes they know about)

does BGP scale?

- To route on the Internet means to route at an enormous scale. We deal with scale via three techniques: pathvector routing, a hierarchy of routing, and topological addressing.
- BGP provides a means for autonomous systems to do policy routing. While the protocol is simple, how it works in practice is enormously complex due to competing economic interests, among other things.
- Though BGP works on the Internet today, its ability (or inability) to scale is becoming a concern as the Internet continues to grow.