
6.033 Spring 2017
Lecture #10

• Reliable Transport
• Window-based Congestion Control

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

How do we route (and address)
scalably, while dealing with

issues of policy and economy?

How do we transport data
scalably, while dealing with

varying application demands?

How do we adapt new
applications and technologies
to an inflexible architecture?

Internet of Problems

BGP

TCP

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Reliable Transport

Sending
Application

Receiving
Application

unreliable networkReliable
Sender

Reliable
Receiver

each byte of data is
delivered exactly
once and in-order

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

sender receiver

ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W	
=	
5

6.033 | spring 2017 | lacurts@mit.edu

sender receiver
1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

8
9
10

11

W	
=	
5

7

X
7

6.033 | spring 2017 | lacurts@mit.edu

sender receiver

ti
me
ou
t

1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

8
9
10

11

W	
=	
5

7

X
7

6.033 | spring 2017 | lacurts@mit.edu

sender receiver

ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

8
9
10

11
11

W	
=	
5

7

X
7

notice that this timeout
happened before the
sender got an ACK

indicating that 7 had
been received

6.033 | spring 2017 | lacurts@mit.edu

sender receiver

ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

W	
=	
5

7

7
8
9
10

6.033 | spring 2017 | lacurts@mit.edu

question: what is the correct value for W?

too small → underutilized network
too large → congestion

6.033 | spring 2017 | lacurts@mit.edu

question: how can a single reliable sender, using a
sliding-window protocol, set its window size to maximize
utilization — but prevent congestion and unfairness —
given that there are many other end points using the

network, all with different, changing demands?

6.033 | spring 2017 | lacurts@mit.edu

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

AIMD

6.033 | spring 2017 | lacurts@mit.edu

 AIMD + Slow Start

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

6.033 | spring 2017 | lacurts@mit.edu

something has
happened to

packet 7

sender receiver

ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W	
=	
5

6.033 | spring 2017 | lacurts@mit.edu

 AIMD + Slow Start

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

retransmission due
to timeout

6.033 | spring 2017 | lacurts@mit.edu

• TCP provides reliable transport along with congestion
control: senders increase their window additively until
they experience loss, and then back off multiplicatively.
Senders also use slow-start and fast-retransmit/fast-
recovery to quickly increase the window and recover from
loss.

• TCP has been a massive success, but senders don’t
react to congestion until queues are already full. Is
there a better way?

6.033 | spring 2017 | lacurts@mit.edu

