6.033 Spring 2017
Lecture #10

- Reliable Transport
- Window-based Congestion Control

mailto:lacurts@mit.edu?subject=

Internet of Problems

How do we route (and address)
scalably, while dealing with -—Pp BGP
iIssues of policy and economy?

How do we transport data
scalably, while dealing with
varying application demands?

How do we adapt new
applications and technologies
to an inflexible architecture?

mailto:lacurts@mit.edu?subject=

Rellable Transport

Sending
Application

\4

Reliable
Sender

unreliable network

Receiving
Application

: A
each byte of data is

delivered exactly
once and in-order

Relilable
Recelver

mailto:lacurts@mit.edu?subject=

receiver

sender

1NOSWTY

v v

receiver

sender

receiver

sender

1NOSWTY

sender receiver

timeout

notice that this timeout
happened before the
sender got an ACK
indicating that 7 had
been received

timeout

sender

=

receiver

question: what is the correct value for W?

too small = underutilized network
too large — congestion

question: how can a single reliable sender, using a
sliding-window protocol, set its window size to maximize

utl

ization — but prevent congestion and unfairness —

given that there are many other end points using the

network, all with different, changing demands®

Window Size

14

12

—i
-

5 10 15
Time (RTTs)

20 25

6.033 | spring 2017 | lacurts@mit.edu

Window Size

16

14

12

10

AIMD + Slow Start

Time (RTTs)

6.033 | spring 2017 | lacurts@mit.edu

25

sender receiver

something has
happened to
packet 7

timeout

Window Size

16

14

12

10

AIMD + Slow Start

to tlmeout -

5 10 15 20
Time (RTTs)

25

 TCP provides reliable transport along with congestion
control: senders increase their window additively until
they experience loss, and then back off multiplicatively.
Senders also use slow-start and fast-retransmit/fast-
recovery to quickly increase the window and recover from
loss.

« TCP has been a massive success, but senders don’t
react to congestion until queues are already full. Is
there a better way?

