6.033 Spring 2017
Lecture #10

- Reliable Transport
- Window-based Congestion Control
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Internet of Problems

How do we route (and address)
scalably, while dealing with -—Pp BGP
iIssues of policy and economy?

How do we transport data
scalably, while dealing with
varying application demands?

How do we adapt new
applications and technologies
to an inflexible architecture?
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timeout

notice that this timeout
happened before the
sender got an ACK
indicating that 7 had
been received
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question: what is the correct value for W?

too small = underutilized network
too large — congestion



question: how can a single reliable sender, using a
sliding-window protocol, set its window size to maximize

utl

ization — but prevent congestion and unfairness —

given that there are many other end points using the

network, all with different, changing demands®
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 TCP provides reliable transport along with congestion
control: senders increase their window additively until
they experience loss, and then back off multiplicatively.
Senders also use slow-start and fast-retransmit/fast-
recovery to quickly increase the window and recover from
loss.

« TCP has been a massive success, but senders don’t
react to congestion until queues are already full. Is
there a better way?



