
6.033 Spring 2017
Lecture #15

• When replication fails us
• Atomicity via shadow copies
• Isolation
• Transactions

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

high-level goal: build reliable
systems from unreliable components

this is difficult because reasoning about failures
is difficult. we need some abstractions that will

let us simplify.

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

atomicity

an action is atomic if it happens completely or
not at all. if we can guarantee atomicity, it will

be much easier to reason about failures

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

transfer	(bank,	account_a,	account_b,	amount):	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount crash! !

problem: account_a lost amount dollars, but
account_b didn’t gain amount dollars

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

transfer	(bank,	account_a,	account_b,	amount):	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount crash! !

solution: make this action atomic. ensure that
we complete both steps or neither step.

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 1

transfer	(bank_file,	account_a,	account_b,	amount):	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(bank_file)

crash! !

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 1

transfer	(bank_file,	account_a,	account_b,	amount):	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(bank_file) crash! !

problem: a crash during write_accounts
leaves bank_file in an intermediate state

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 2
(shadow copies)

transfer	(bank_file,	account_a,	account_b,	amount):	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(tmp_file)	
				rename(tmp_file,	bank_file)

crash! !

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 2
(shadow copies)

transfer	(bank_file,	account_a,	account_b,	amount):	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(tmp_file)	
				rename(tmp_file,	bank_file)

crash! !

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 2
(shadow copies)

problem: rename must itself be atomic
(so that we can only fail before or after it, not during)

transfer	(bank_file,	account_a,	account_b,	amount):	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(tmp_file)	
				rename(tmp_file,	bank_file) crash! !

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

							directory	entries	
										filename	“bank_file”	->	inode	1	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

need to:
1. point “bank_file”’s dirent at inode 2
2. delete “tmp_file”’s dirent
3. remove refcount on inode 1

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

							directory	entries	
										filename	“bank_file”	->	inode	1	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

							directory	entries	
										filename	“bank_file”	->	inode	2	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

							directory	entries	
										filename	“bank_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode	
				remove	new_file	dirent	

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

							directory	entries	
										filename	“bank_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	0																		refcount:	1

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode	
				remove	new_file	dirent	
				decref(old_inode)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode	
				remove	new_file	dirent	
				decref(old_inode)

							directory	entries	
										filename	“bank_file”	->	inode	1	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

crash! !
rename didn’t happen

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode	
				remove	new_file	dirent	
				decref(old_inode)

							directory	entries	
										filename	“bank_file”	->	inode	2	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

crash! !
rename happened,

but refcounts are wrong

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

							directory	entries	
										filename	“bank_file”	->	inode	?	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

crash! !

crash during this line seems bad..
but won’t happen; single-sector writes

are themselves atomic

6.033 | spring 2017 | lacurts@mit.edu

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode	
				remove	new_file	dirent	
				decref(old_inode)

interlude

we’re trying to make a sequence of actions atomic
using shadow copies: write to a temporary file,

and then rename it to the original.

rename itself must be atomic, and we’ve almost
got that working — thanks in part to atomic

single-sector writes — but our refcounts aren’t
quite correct.

rename(new_file,	old_file):	
				new_inode	=	lookup(new_file)			//	=	2	
				old_inode	=	lookup(old_file)			//	=	1	

				old_file	dirent	=	new_inode	
				remove	new_file	dirent	
				decref(old_inode)

							directory	entries	
										filename	“bank_file”	->	inode	2	
										filename	“tmp_file”	->	inode	2	

inode	1:	//	old	data									inode	2:	//	new	data	
				data	blocks:	[..]												data	blocks:	[..]	
				refcount:	1																		refcount:	1

crash! !
rename happened,

but refcounts are wrong

6.033 | spring 2017 | lacurts@mit.edu

recover(disk):	
				for	inode	in	disk.inodes:	
								inode.refcount	=	find_all_refs(disk.root_dir,	inode)	
				if	exists(“tmp_file”):	
								unlink(“tmp_file”)

solution: recover from failure
(clean things up)

6.033 | spring 2017 | lacurts@mit.edu

atomicity
(first abstraction)

not quite solved; shadow copies perform poorly
even for a single user and a single file, and we

haven’t even talked about concurrency

isolation
(second abstraction)

if we guarantee isolation, then two actions A1
and A2 will appear to have run serially even if

they were executed concurrently
(i.e., A1 before A2, or vice versa)

6.033 | spring 2017 | lacurts@mit.edu

transactions: provide atomicity and isolation
Transaction	1									Transaction	2	
		begin																	begin	
		transfer(A,	B,	20)				transfer(B,	C,	5)	
		withdraw(B,	10)							deposit(A,	5)	
		end																			end

isolation: when multiple transactions are run
concurrently, it will appear as if they were run sequentially

(serially)

atomicity: each transaction will each appear to have
run to completion, or not at all

6.033 | spring 2017 | lacurts@mit.edu

atomicity and isolation — and thus,
transactions — make it easier to reason

about failures (and concurrency)

6.033 | spring 2017 | lacurts@mit.edu

couldn’t we just put locks around
everything?

(isn’t that what locks are for?)

transfer	(bank_file,	account_a,	account_b,	amount):	
				acquire(lock)	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(“tmp_file”)	
				rename(“tmp_file”,	bank_file)	
				release(lock)

6.033 | spring 2017 | lacurts@mit.edu

this particular strategy will perform poorly
(would force a single transfer at a time)

locks sometimes require global reasoning,
which is messy

eventually, we’ll incorporate locks, but in a systematic way

transfer	(bank_file,	account_a,	account_b,	amount):	
				acquire(lock)	
				bank	=	read_accounts(bank_file)	
				bank[account_a]	=	bank[account_a]	-	amount	
				bank[account_b]	=	bank[account_b]	+	amount	
				write_accounts(“tmp_file”)	
				rename(“tmp_file”,	bank_file)	
				release(lock)

6.033 | spring 2017 | lacurts@mit.edu

goal: to implement transactions,
which provide atomicity and isolation,

while not hindering performance

atomicity shadow copies. work, but perform
poorly and don’t allow for concurrency

isolation ?

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

6.033 | spring 2017 | lacurts@mit.edu

• Transactions provide atomicity and isolation, both of
which make it easier for us to reason about failures
because we don’t have to deal with intermediate states. 

• Shadow copies are one way to achieve atomicity. The
work, but perform poorly: require copying an entire file
even for small changes, and don’t allow for concurrency.

6.033 | spring 2017 | lacurts@mit.edu

