6.033 Spring 2017
L ecture #15

* When replication fails us
* Atomicity via shadow copies
* |Isolation
* Transactions

mailto:lacurts@mit.edu?subject=

high-level goal: build reliable
systems from unreliable components

this Is difficult because reasoning about failures
s difficult. we need some abstractions that will
let us simplity.

mailto:lacurts@mit.edu?subject=

atomicity

an action is atomic if it happens completely or
not at all. if we can guarantee atomicity, it will
be much easier to reason about failures

mailto:lacurts@mit.edu?subject=

transfer (bank, , account_b, amount):
bank|] bank|] - amount
bank[account b] bank[account b] + amount

«<— crash! <

problem: account_a lost amount dollars, but
account_b didn't gain amount dollars

mailto:lacurts@mit.edu?subject=

transfer (bank, , account_b, amount):
bank|] bank|] - amount
bank[account b] bank[account b] + amount

«<— crash! <

solution: make this action atomic. ensure that
we complete both steps or neither step.

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 1

transfer (bank file, account_a, account_ b, amount):
pank = read accounts()
pank[account _a] = bank[account a] - amour]"g_crash'}N
pank[account b] = bank[account b] + amount '

write accounts()

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 1

transfer (bank file, account_a, account_ b, amount):
pank = read accounts()
nank[account_a] = bank[account a] - amount
pank[account b] = bank[account b] + amount
write accounts() «— crash! <

problem: a crash during write accounts
leaves IN an intermediate state

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 2

(shadow copies)

transfer (bank file, account_a, account_ b, amount):

Dan
Dal
DAl

K = read _accounts()

K[account_a] = bank[account _a] - amount |
+— crash! <

K[account b] = bank[account b] + amount

write accounts(tmp file)
rename(tmp file,)

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 2

(shadow copies)

transfer (bank file, account_a, account_ b, amount):
pank = read_accounts()

pank[account _a] = bank[account a] - amount
pank[account_b] = bank[account b] + amount
write accounts(tmp file)<«— crash! <

rename(tmp file,)

mailto:lacurts@mit.edu?subject=

quest for atomicity: attempt 2

(shadow copies)

transfer (bank file, account_a, account_ b, amount):
pank = read_accounts()
pank[account _a] = bank[account a] - amount
pank[account_b] = bank[account b] + amount
write accounts(tmp file)

rename(tmp file,) +— crash! X

problem: rename must itself be atomic
(so that we can only fail before or after it, not during)

mailto:lacurts@mit.edu?subject=

directory entries
filename “ »” -> 1node
filename “tmp file” -> inode 2

inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
heed to:
1. point * "'s dirent at inode 2

2. delete “tmp file”'s dirent
3. remove refcount on inode

mailto:lacurts@mit.edu?subject=

directory entries
filename “ »” -> 1node
filename “tmp file” -> inode 2

inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):

new inode = lookup(new file)
= lookup()

mailto:lacurts@mit.edu?subject=

directory entries
filename ?” -> 1node 2
filename “tmp file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):
new inode = lookup(new file) // = 2
= lookup() /) =1

dirent = new inode

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

directory entries

filename ?” -> 1node 2
inode 1: // old data inode 2: // new data
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):
new inode = lookup(new file) // = 2
= lookup() /) =1

dirent = new inode
remove new file dirent

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

directory entries

filename “ ?” -> 1node 2
inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: © refcount: 1
rename(new file,):
new inode = lookup(new file)
= lookup()

dirent = new inode
remove new file dirent
decref()

mailto:lacurts@mit.edu?subject=

directory entries
filename “ »” -> 1node
filename “tmp file” -> inode 2

inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):
new inode = lookup(new file)
= lookup()
> crash! =<

dirent = new inode
remove new file dirent
decref()

rename didn't happen

mailto:lacurts@mit.edu?subject=

directory entries
filename “ ?” -> 1node 2
filename “tmp file” -> inode 2

inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):
new inode = lookup(new file)
= lookup()

dirent = new inode

o o ' vy
remove new file dirent crash! <

decref() rename happened,
but refcounts are wrong

mailto:lacurts@mit.edu?subject=

directory entries
filename “ »” -> 1node ?
filename “tmp file” -> inode 2

inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):
new inode = lookup(new file)
= lookup()

dirent = new inode <— crash! <
remove new file dirent e | o
crash during this line seems bad..
decr‘e_F() but won't happen; single-sector writes
are themselves atomic

interlude

we’re trying to make a sequence of actions atomic
using shadow copies: write to a temporary file,
and then rename it to the original.

rename itself must be atomic, and we’ve almost
got that working — thanks in part to atomic
single-sector writes — but our refcounts aren’t
quite correct.

directory entries
filename “ ?” -> 1node 2
filename “tmp file” -> inode 2

inode 1: inode 2:
data blocks: [..] data blocks: [..]
refcount: 1 refcount: 1
rename(new file,):
new inode = lookup(new file)
= lookup()

dirent = new inode

o o ' vy
remove new file dirent crash! =<

decref() rename happened,
but refcounts are wrong

solution: from fallure

(clean things up)

recover(disk):
for 1inode in disk.inodes:
inode.refcount = find all refs(disk.root dir, inode)
if exists(“tmp file”):
unlink(“tmp_file”)

atomicity

(first abstraction)

not quite solved; shadow copies perform poorly
even for a single user and a single ftile, and we
haven't even talked about concurrency

f we guaran

Isolation

(second abstraction)

‘ee |SO

and A2 will a

opear t

ati

O

on, then two actions A1
nave run serially even if

they were executed concurrently
(i.e., A1 before A2, or vice versa)

transactions: provide atomicity and isolation

Transaction 2

begin begin

transfer(A, B, 20) transfer(B, C, 5)
withdraw(B, 10) deposit(A, 5)

end end

atomicity: each transaction will each appear to have
run to completion, or not at all

isolation: when multiple transactions are run
concurrently, it will appear as if they were run sequentially
(serially)

atomicity and isolation — and thus,
transactions — make it easier to reason
about failures (and concurrency)

transfer (bank file, account _a, account_b, amount):

pank = read accounts(bank file)
pank[account_a] = bank[account a] - amount
pank[account_b] = bank[account b] + amount
write accounts(“tmp file”)

rename(“tmp file”, bank file)

couldn’t we just put locks around
everything?
(isn’t that what locks are for?)

transfer (bank file, account _a, account_b, amount):

pank = read accounts(bank file)
pank[account_a] = bank[account a] - amount
pank[account_b] = bank[account b] + amount
write accounts(“tmp file”)

rename(“tmp file”, bank file)

this particular strategy will perform poorly
(would force a single transfer at a time)

locks sometimes require global reasoning,

which is messy
eventually, we'll incorporate locks, but in a systematic way

goal: to implement

)

which provide atomicity and isolation,

while not hindering per

atomicity

iIsolation >

eventually, we also want transaction-

be distributed: to run across mul

‘ormance

shadow copies. work, but perform
poorly and don't allow for concurrency

based systems to
tiple machines

* Transactions provide atomicity and isolation, both of
which make it easier for us to reason about failures
because we don’'t have to deal with intermediate states.

 Shadow copies are one way to achieve atomicity. The
work, but perform poorly: require copying an entire file
even for small changes, and don't allow for concurrency.

