
6.033 Spring 2017
Lecture #17

• Isolation
• Conflict serializability
• Conflict graphs
• Two-phase locking

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

transactions, which provide atomicity and
isolation, while not hindering performance

atomicity
shadow copies (simple, poor
performance) or logs (better

performance, a bit more complex)

isolation two-phase locking

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
read(x)	
tmp	=	read(y)	
write(y,	tmp+10)	
commit

T2	
begin	
write(x,	20)	
write(y,	30)	
commit

goal: run transactions T1, T2, .., TN	concurrently, and
have it “appear” as if they ran sequentially

naive approach: actually run them sequentially, via
(perhaps) a single global lock

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
read(x)	
tmp	=	read(y)	
write(y,	tmp+10)	
commit

T2	
begin	
write(x,	20)	
write(y,	30)	
commit

goal: run transactions T1, T2, .., TN	concurrently, and
have it “appear” as if they ran sequentially

what does this even mean?

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
read(x)	
tmp	=	read(y)	
write(y,	tmp+10)	
commit

T2	
begin	
write(x,	20)	
write(y,	30)	
commit

T1	->	T2:	x=20,	y=30	
T2	->	T1:	x=20,	y=40

possible sequential schedules

T1:	read(x)	
T2:	write(x,	20)	
T1:	tmp	=	read(y)	
T2:	write(y,	30)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=10
(assume x, y initialized to zero)

T2:	write(x,	20)	
T1:	read(x)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=40

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
read(x)	
tmp	=	read(y)	
write(y,	tmp+10)	
commit

T2	
begin	
write(x,	20)	
write(y,	30)	
commit

T1	->	T2:	x=20,	y=30	
T2	->	T1:	x=20,	y=40

possible sequential schedules

T1:	read(x)	
T2:	write(x,	20)	
T1:	tmp	=	read(y)	
T2:	write(y,	30)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=10
(assume x, y initialized to zero)

T2:	write(x,	20)	
T1:	read(x)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=40

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
read(x)	
tmp	=	read(y)	
write(y,	tmp+10)	
commit

T2	
begin	
write(x,	20)	
write(y,	30)	
commit

T1	->	T2:	x=20,	y=30	
T2	->	T1:	x=20,	y=40

possible sequential schedules

T2:	write(x,	20)	
T1:	read(x)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=40

T1:	read(x)	
T2:	write(x,	20)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=40

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
read(x)	
tmp	=	read(y)	
write(y,	tmp+10)	
commit

T2	
begin	
write(x,	20)	
write(y,	30)	
commit

T1	->	T2:	x=20,	y=30	
T2	->	T1:	x=20,	y=40

possible sequential schedules

T2:	write(x,	20)	
T1:	read(x)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

at end:
x=20,	y=40

T1:	read(x)	//	x=0	
T2:	write(x,	20)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	//	y=30	
T1:	write(y,	tmp+10)

at end:
x=20,	y=40

In the second schedule, T1 reads x=0 and y=30; those two
reads together aren’t possible in a sequential schedule.

is that okay?
6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

there are many ways for multiple transactions to
“appear” to have been run in sequence; we say

there are different notions of serializability. what
type of serializability you want depends on what your

application needs.

it depends.

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

two operations conflict if they operate on the same
object and at least one of them is a write.

conflicts

T1	
begin	
T1.1	read(x)	
T1.2	tmp	=	read(y)	
T1.3	write(y,	tmp+10)	
commit

T2	
begin	
T2.1	write(x,	20)	
T2.2	write(y,	30)	
commit

T1.2	tmp	=	read(y) T2.2	write(y,	30)and
T1.3	write(y,	tmp+10) T2.2	write(y,	30)and

conflicts
T1.1	read(x) T2.1	write(x,	20)and

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

two operations conflict if they operate on the same
object and at least one of them is a write.

conflicts

in any schedule, two conflicting operations A and B will
have an order: either A is executed before B, or B is

executed before A. we’ll call this the order of the conflict
(in that schedule).

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
T1.1	read(x)	
T1.2	tmp	=	read(y)	
T1.3	write(y,	tmp+10)	
commit

T2	
begin	
T2.1	write(x,	20)	
T2.2	write(y,	30)	
commit

T1.2	tmp	=	read(y) T2.2	write(y,	30)->
T1.3	write(y,	tmp+10) T2.2	write(y,	30)->

conflicts
T1.1	read(x) T2.1	write(x,	20)->

if we execute T1 before T2, within any conflict, T1’s
operation will occur first

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

T1	
begin	
T1.1	read(x)	
T1.2	tmp	=	read(y)	
T1.3	write(y,	tmp+10)	
commit

T2	
begin	
T2.1	write(x,	20)	
T2.2	write(y,	30)	
commit

T1.2	tmp	=	read(y) T2.2	write(y,	30)<-
T1.3	write(y,	tmp+10) T2.2	write(y,	30)<-

conflicts
T1.1	read(x) T2.1	write(x,	20)<-

if we execute T2 before T1, within any conflict, T2’s
operation will occur first

6.033 | spring 2017 | lacurts@mit.edu

two operations conflict if they operate on the same
object and at least one of them is a write.

conflicts

conflict serializability
a schedule is conflict serializable if the order of all of its
conflicts is the same as the order of the conflicts in some

sequential schedule.

6.033 | spring 2017 | lacurts@mit.edu

T1.1:	read(x)	
T2.1:	write(x,	20)	
T2.2:	write(y,	30)	
T1.2:	tmp	=	read(y)	
T1.3:	write(y,	tmp+10)

T1.1,	T2.1	
T1.2,	T2.2	
T1.3,	T2.2

conflicts

T2.1:	write(x,	20)	
T1.1:	read(x)	
T2.2:	write(y,	30)	
T1.2:	tmp	=	read(y)	
T1.3:	write(y,	tmp+10)

T1.1	->	T2.1T2.1	->	T1.1
T2.2	->	T1.2
T2.2	->	T1.3

T2.2	->	T1.2
T2.2	->	T1.3

a schedule is conflict serializable if the order of all of
its conflicts is the same as the order of the conflicts in

some sequential schedule.
(here, that means we will see one transaction’s — T1’s or T2’s —

operation occurring first in each conflict)

6.033 | spring 2017 | lacurts@mit.edu

T1.1:	read(x)	
T2.1:	write(x,	20)	
T2.2:	write(y,	30)	
T1.2:	tmp	=	read(y)	
T1.3:	write(y,	tmp+10)

T1.1,	T2.1	
T1.2,	T2.2	
T1.3,	T2.2

conflicts

T2.1:	write(x,	20)	
T1.1:	read(x)	
T2.2:	write(y,	30)	
T1.2:	tmp	=	read(y)	
T1.3:	write(y,	tmp+10)

T1.1	->	T2.1T2.1	->	T1.1
T2.2	->	T1.2
T2.2	->	T1.3

T2.2	->	T1.2
T2.2	->	T1.3

a schedule is conflict serializable if the order of all of
its conflicts is the same as the order of the conflicts in

some sequential schedule.
(here, that means we will see one transaction’s — T1’s or T2’s —

operation occurring first in each conflict)

6.033 | spring 2017 | lacurts@mit.edu

edge from Ti to Tj iff Ti and Tj have a conflict between
them and the first step in the conflict occurs in Ti

conflict graph

T2:	write(x,	20)	
T1:	read(x)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

T1:	read(x)	
T2:	write(x,	20)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

T2.1	->	T1.1
T2.2	->	T1.2
T2.2	->	T1.3

T1.1	->	T2.1
T2.2	->	T1.2
T2.2	->	T1.3

6.033 | spring 2017 | lacurts@mit.edu

edge from Ti to Tj iff Ti and Tj have a conflict between
them and the first step in the conflict occurs in Ti

conflict graph

T2:	write(x,	20)	
T1:	read(x)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

T1:	read(x)	
T2:	write(x,	20)	
T2:	write(y,	30)	
T1:	tmp	=	read(y)	
T1:	write(y,	tmp+10)

T2 T1 T2 T1

a schedule is conflict serializable iff it has an acyclic
conflict graph

6.033 | spring 2017 | lacurts@mit.edu

problem: how do we generate schedules that are
conflict serializable? generate all possible
schedules and check their conflict graphs?

6.033 | spring 2017 | lacurts@mit.edu

solution: two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

we will usually release locks after commit or abort,
which is technically strict two-phase locking

6.033 | spring 2017 | lacurts@mit.edu

T1															T2	
acquire(x.lock)		acquire(y.lock)	
read(x)										read(y)	
acquire(y.lock)		acquire(x.lock)	
read(y)										read(x)	
release(y.lock)		release(x.lock)	
release(x.lock)		release(y.lock)

problem: 2PL can result in deadlock

6.033 | spring 2017 | lacurts@mit.edu

T1															T2	
acquire(x.lock)		acquire(y.lock)	
read(x)										read(y)	
acquire(y.lock)		acquire(x.lock)	
read(y)										read(x)	
release(y.lock)		release(x.lock)	
release(x.lock)		release(y.lock)

solution: global ordering on locks

6.033 | spring 2017 | lacurts@mit.edu

T1															T2	
acquire(x.lock)		acquire(y.lock)	
read(x)										read(y)	
acquire(y.lock)		acquire(x.lock)	
read(y)										read(x)	
release(y.lock)		release(x.lock)	
release(x.lock)		release(y.lock)

better solution: take advantage of
atomicity and abort one of the transactions!

6.033 | spring 2017 | lacurts@mit.edu

performance improvement: allow concurrent
reads with reader- and writer-locks

acquire_reader() and acquire_writer() instead of just acquire()

6.033 | spring 2017 | lacurts@mit.edu

• Different types of serializability allow us to specify
precisely what we want when we run transactions in
parallel. Conflict-serializability is common in practice.  

• Two-phase locking allows us to generate conflict
serializable schedules. We can improve its performance
by allowing concurrent reads via reader- and writer-locks.

6.033 | spring 2017 | lacurts@mit.edu

