6.033 Spring 2017
Lecture #17

* Isolation
* Conflict serializability
* Conflict graphs
* Two-phase locking

mailto:lacurts@mit.edu?subject=

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

- which provide atomicity anao
iIsolation, while not hindering performance
shadow copies (simple, poor

atomicity > performance) or logs (better
performance, a bit more complex)

iIsolation >

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

mailto:lacurts@mit.edu?subject=

goal: run transactions T1, T2, .., TN concurrently, and
have it “appear” as it they ran sequentially

T2
begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)
write(y, tmp+10) commit

commit

naive approach: actually run them sequentially, via
(perhaps) a single global lock

mailto:lacurts@mit.edu?subject=

goal: run transactions T1, T2, .., TN concurrently, and
have it “appear” as it they ran sequentially

l what does this even mean?

T2
begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)
write(y, tmp+10) commit

commit

mailto:lacurts@mit.edu?subject=

T2

begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)

write(y, tmp+10) commit
commit

possible sequential schedules

-> T2: x=20, y=30
T2 -> : X=20, y=40

T2: write(x, 20)
: read(x)
T2: write(y, 30)
: tmp = read(y)
: write(y, tmp+10)

at end:
X=20, y=40

: read(x)
T2: write(x, 20)

: tmp = read(y)
T2: write(y, 30)

: write(y, tmp+10)

at end:
x=20, y=10

(assume X, y initialized to zero)

mailto:lacurts@mit.edu?subject=

T2

begin begin possible sequential schedules
Eeadfx) ; WP?EE(X’ gg) -> T2: x=20, y=30
mp = Prea (¥) WL ?(y,) T2 -> : X=20, y=40
write(y, tmp+10) commit
commit
T2: write(x, 20) : read(x)
: read(x) T2:\rite(x, 20
T2: write(y, 30)
: tmp = read(y) T2:
: write(y, tmp+10) tmp+10)
at end: at e
X=20, y=40 X3

(assume x, y initialized to zero)

mailto:lacurts@mit.edu?subject=

T2

begin begin possible sequential schedules
Eeadfx) ; WP?EE(X’ gg) -> T2: x=20, y=30
mp = rea (y) Wl ?(y,) T2 -> T1l: x=20, y=40
write(y, tmp+10) commit
commit
T2: write(x, 20) : read(x)
: read(x) T2: write(x, 20)
T2: write(y, 30) T2: write(y, 30)
: tmp = read(y) . tmp = read(y)
: write(y, tmp+10) . write(y, tmp+10)
at end: at end:

X=20, y=40 X=20, y=40

mailto:lacurts@mit.edu?subject=

T2

begin begin possible sequential schedules
readEx)] wr}te(x, 20) > T2: x=20, y=30
tmp = read(y) wrlt?(y, 30) T2 - . x=20, y=40
write(y, tmp+10) commit
commit
T2: write(x, 20) : read(x)
: read(x) T2: write(x, 20)
T2: write(y, 30) T2: write(y, 30)
: tmp = read(y) . tmp = read(y)
: write(y, tmp+10) . write(y, tmp+10)
at end: at end:
X=20, y=40 X=20, y=40

In the second schedule, T1 reads x=0 and y=30; those two

reads together aren't possible in a sequential schedule.
s that okay”

mailto:lacurts@mit.edu?subject=

it depends.

there are many ways for multiple transactions to
‘appear” to have been run in sequence; we say
there are different notions of serializability. what
type of serializability you want depends on what your
application needs.

mailto:lacurts@mit.edu?subject=

conflicts

two operations conflict if they operate on the same
object and at least one of them is a write.

T2
begin begin
read(x) T2.1 write(x, 20)
tmp = read(y) T2.2 write(y, 30)
write(y, tmp+10) commit
commit
conflicts

read(x) and T2.1 write(x, 20)
tmp = read(y) and T2.2 write(y, 30)
write(y, tmp+10) and T2.2 write(y, 30)

mailto:lacurts@mit.edu?subject=

conflicts

two operations conflict if they operate on the same
object and at least one of them is a write.

in any schedule, two conflicting operations A and B will
have an order: either A Is executed before B, or B IS
executed before A. we'll call this the order of the conflict
(in that schedule).

mailto:lacurts@mit.edu?subject=

T2

begin begin
read(x) T2.1 write(x, 20)
tmp = read(y) T2.2 write(y, 30)
write(y, tmp+10) commit
commit
conflicts

read(x) -> T2.1 write(x, 20)
tmp = read(y) -> T2.2 write(y, 30)
write(y, tmp+10) -> T2.2 write(y, 30)

If we execute T1 before T2, within any conflict, T1's
operation will occur first

mailto:lacurts@mit.edu?subject=

T2

begin begin
read(x) T2.1 write(x, 20)
tmp = read(y) T2.2 write(y, 30)
write(y, tmp+10) commit
commit
conflicts

read(x) <- T2.1 write(x, 20)
tmp = read(y) <- T2.2 write(y, 30)
write(y, tmp+10) <- T2.2 write(y, 30)

If we execute T2 before T1, within any conflict, T2's
operation will occur first

conflicts

two operations conflict if they operate on the same
object and at least one of them is a write.

conflict serializability

a schedule is conflict serializable if the order of all of its
conflicts Is the same as the order of the conflicts in some
seqguential schedule.

conflicts a schedule is conflict serializable if the order of all of
its conflicts is the same as the order of the conflicts in

T2.1 .
? T2 .9 some sequential schedule.
) .
, T2.2 (here, that means we will see one transaction's — T1's or T2's —
operation occurring first in each contlict)
T2.1: write(x, 20) : read(x)
: read(x) T2.1: write(x, 20)
T2.2: write(y, 30) T2.2: write(y, 30)
: tmp = read(y) : tmp = read(y)
: write(y, tmp+10) : write(y, tmp+10)
T2.1 -> -> T2.1
T2.2 -> T2.2 ->

12.2 -> 12.2 ->

conflicts a schedule is conflict serializable if the order of all of
its conflicts is the same as the order of the conflicts in

’ T2 [1 .
some seqguential schedule.
, 12.2
, T2.2 (here, that means we will see one transaction’s — T1's or T2's —

operation occurring first in each contlict)

T2.1: write(x, 20)
: read(x)
T2.2: write(y, 30)
: tmp = read(y)
: write(y, tmp+10)

2.1 ->
T2.2 ->
T2.2 ->

conflict graph

edge from Ti to T; iff Ti and T4 have a conflict between
them and the first step in the conflict occurs in Tj

T2: write(x, 20) : read(x)
: read(x) T2: write(x, 20)
T2: write(y, 30) T2: write(y, 30)
: tmp = read(y) : tmp = read(y)
: write(y, tmp+10) : write(y, tmp+10)
T2.1 =-> -> T12.1
T2.2 => T2.2 ->

T2.2 -> T2.2 ->

conflict graph

edge from Ti to T; iff Ti and T4 have a conflict between
them and the first step in the conflict occurs in T

T2: write(x, 20) : read(x)
: read(x) T2: write(x, 20)
T2: write(y, 30) T2: write(y, 30)
: tmp = read(y) : tmp = read(y)
: write(y, tmp+10) : write(y, tmp+10)
2 — T2 <—=

a schedule is conflict serializable iff it has an acyclic
conflict graph

problem: how do we generate schedules that are
contlict serializable” generate all possible
schedules and check their conflict graphs”

solution: two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

we will usually release locks after commit or abort,
which Is technically strict two-phase locking

T1
acquire(x.lock)
read(x)
acquire(y.lock)
read(y)
release(y.lock)
release(x.lock)

T2
acquire(y.lock)
read(y)
acquire(x.lock)
read(x)
release(x.lock)
release(y.lock)

problem: 2PL can result in deadlock

T1
acquire(x.lock)
read(x)
acquire(y.lock)
read(y)
release(y.lock)
release(x.lock)

T2
acquire(y.lock)
read(y)
acquire(x.lock)
read(x)
release(x.lock)
release(y.lock)

solution: global ordering on locks

T1
acquire(x.lock)
read(x)
acquire(y.lock)
read(y)
release(y.lock)
release(x.lock)

T2
acquire(y.lock)
read(y)
acquire(x.lock)
read(x)
release(x.lock)
release(y.lock)

better solution: take advantage of
atomicity and abort one of the transact

ions|

performance improvement: allow concurrent
reads with reader- and writer-locks

acquire_reader() and acquire_writer() instead of just acquire()

* Different types of serializability allow us to specity
orecisely what we want when we run transactions in
parallel. Conflict-serializability is common in practice.

* Two-phase locking allows us to generate contlict
serializable schedules. We can improve its performance
by allowing concurrent reads via reader- and writer-locks.

