6.033 Spring 2017
L ecture #18

* Distributed transactions
* Multi-site atomicity
 Two-phase commit

mailto:lacurts@mit.edu?subject=

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

- which provide atomicity anao
iIsolation, while not hindering performance
shadow copies (simple, poor

atomicity > performance) or logs (better
performance, a bit more complex)

isolation > two-phase locking

eventually, we also want transaction-based systems to
be . to run across multiple machines

mailto:lacurts@mit.edu?subject=

client coordinator

begin >

> ok
A-amount >

< ok
B+amount >

< ok
commit >

< ok

mailto:lacurts@mit.edu?subject=

client coordinator N-Z server

begin >
>
<
< ok
A-amount >
< ok
Z+amount >
>
<
< ok
commit >
P
<
< ok

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

client coordinator N-Z server

begin >
< ok
A-amount >
< ok
Z+amount >
< ok
commit >
X
problem: one server committed, the other did not

6.033 | spring 2017 | lacurts@mit.edu

goal: develop a protocol that

Drov

calrl

de N th

face of all sorts of failures

€

(message loss, message reordering, worker

]

failure, coordinator failure)

message failures solved with
reliable transport protocol
(sequence numbers + ACKSs)

client coordinator N-Z server

>
assume all parts of the
transactions prior to >
commit have happened |-
< ok
commit >
prepare
prepare >
<
< ok
commit
commit >
<

two-phase commit: nodes agree that
they're ready to commit before committing

client coordinator N-Z server

< ok
commit >
prepare —X
timeout; resend
prepare
prepare >

failure: lost prepare

client

coordinator

ok

N-Z server

timeout; resend

faillure:

commit >

X

prepare

prepare

prepare

thanks to sequence
numbers, A-M will ACK
this message but not re-
process it

>

ost ACK for prepare

client

coordinator

>

N-Z server

commit

prepare

prepare

failure: worker tailure while preparing

client coordinator @

>

commit >

prepare

prepare >

failure: worker failure during prepare

client coordinator @

>

< ok
commit >
prepare
prepare >
abort
< abort

failure: worker failure during prepare

client

coordinator

ok

N-Z server

ok

commit >

prepare

prepare

timeout; resend

faillure:

commit

tx?

commit

commit

ost commit message

client coordinator
>
>
<
< ok
commit >
prepare
prepare >
<
< ok
commit
X
timeout; resend
commit
commit >
<

N-Z server

failure: lost ACK for commit message

client

N-Z server

coordinator
>
>
<
< ok
commit >
prepare
prepare >
<
< ok
commit
commit >

failure: worker failure during commit

client coordinator @

>

< ok
commit >
prepare
prepare
<

< ok
commit
commit

failure: worker failure during commit

it workers fail after the cornr
cannot abort the transact

mit point

ioNn. WOr

, WE

KEIS

must be able to recover into a prepared

state

workers write records once prepared. the

recovery process — reading through the log — will
iIndicate which transactions are prepared but not

committed

client coordinator @

>

< ok
commit >
prepare
prepare
<

< ok
commit
commit

failure: worker failure during commit

client

N-Z server

coordinator
>
>
<
< ok
commit >
prepare
prepare >
<
< ok
commit
commit >

failure: worker failure during commit

client coordinator N-Z server

>
>
<
< ok
commit >
prepare
prepare >
<
< ok
commit
commit >
< tx?
commit >
<

failure: worker failure during commit

6.033 | spring 2017 | lacurts@mit.edu

client

coo@ator

>

N-Z server

commit

prepare

failure: coordinator tailure during prepare

6.033 | spring 2017 | lacurts@mit.edu

client coordinator N-Z server

>
>
<
< ok
commit >
prepare
... . Ccoordinator reCOVEerS -«horocerririiii e faa,
abort
abort >
<

failure: coordinator tailure during prepare

6.033 | spring 2017 | lacurts@mit.edu

client coo@ator N-Z server

>

< ok
commit >
prepare
prepare >
<
< ok
commit

failure: coordinator tailure during commit

6.033 | spring 2017 | lacurts@mit.edu

client coordinator N-Z server

>
>
<
< ok
commit >
prepare
prepare >
<
< ok
commit
... CoOordiNator PeCOVEIPS ' :riverrerriiiiiiiiiiiiiiae s e
commit
commit >
<

failure: coordinator failure during commit

problem: in our example, when workers
fail, some of the data (e.g., accounts A-M)
s completely unavailable

solution: replicate data

but! how will we keep multiple copies of
the data ? what type of
consistency do we want”

* Two-phase commit allows us to achieve multi-site
atomicity: transactions remain atomic even when they
require communication with multiple machine.

* |n two-phase commit, failures prior to the commit point
can be aborted. If workers (or the coordinator) fail after
the commit point, they recover into the prepared state,
and complete the transaction.

* Our remaining issue deals with availability and replication:
we Will replicate data across sites to improve availabllity,
but must deal with keeping multiple copies of the data
consistent.

