
6.033 Spring 2017
Lecture #18

• Distributed transactions
• Multi-site atomicity
• Two-phase commit

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

transactions, which provide atomicity and
isolation, while not hindering performance

atomicity
shadow copies (simple, poor
performance) or logs (better

performance, a bit more complex)

isolation two-phase locking

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

client coordinator A-M server

begin

ok

A-amount

ok

B+amount

ok

commit

ok

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

client coordinator A-M server

begin

ok

A-amount

ok

commit

ok

N-Z server

Z+amount

ok

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

client coordinator A-M server

begin

ok

A-amount

ok

commit

N-Z server

Z+amount

ok

X

problem: one server committed, the other did not

6.033 | spring 2017 | lacurts@mit.edu

goal: develop a protocol that can
provide multi-site atomicity in the

face of all sorts of failures

(message loss, message reordering, worker
failure, coordinator failure)

message failures solved with
reliable transport protocol

(sequence numbers + ACKs)

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

N-Z server

ok

assume all parts of the
transactions prior to

commit have happened

two-phase commit: nodes agree that
they’re ready to commit before committing

6.033 | spring 2017 | lacurts@mit.edu

prepare

prepare

commit

commit

client coordinator A-M server

commit

N-Z server

prepare

ok

prepare

failure: lost prepare

X
prepare

timeout;	resend

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

N-Z server

ok

prepare

failure: lost ACK for prepare

prepare
X

timeout;	resend

prepare

thanks	to	sequence	
numbers,	A-M	will	ACK	

this	message	but	not	re-
process	it

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

N-Z server

ok

prepare

failure: worker failure while preparing

prepare

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

N-Z server

prepare

failure: worker failure during prepare

prepare

!

ok

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

N-Z server

abort

prepare

failure: worker failure during prepare

prepare

!

abort

ok

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

N-Z server

prepare

prepare

commit

ok

commit

failure: lost commit message

timeout;	resend

commit

tx?
X

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

N-Z server

prepare

prepare

commit

ok

commit

failure: lost ACK for commit message

timeout;	resend

commit

X

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

N-Z server

prepare

prepare

ok

commit

failure: worker failure during commit

commit

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

prepare

prepare

ok

commit

failure: worker failure during commit

commit

N-Z server!

6.033 | spring 2017 | lacurts@mit.edu

if workers fail after the commit point, we
cannot abort the transaction. workers
must be able to recover into a prepared

state

workers write PREPARE records once prepared. the
recovery process — reading through the log — will
indicate which transactions are prepared but not

committed

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

prepare

prepare

ok

commit

failure: worker failure during commit

commit

N-Z server!

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

prepare

prepare

ok

commit

failure: worker failure during commit

commit

N-Z server

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

ok

prepare

prepare

ok

commit

failure: worker failure during commit

commit

N-Z server

tx?
commit

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

N-Z server

prepare

ok

failure: coordinator failure during prepare

!

6.033 | spring 2017 | lacurts@mit.edu

client coordinator A-M server

commit

N-Z server

prepare

ok

failure: coordinator failure during prepare

abort

abort

coordinator	recovers

6.033 | spring 2017 | lacurts@mit.edu

client A-M server

commit

ok

N-Z server

prepare

prepare

commit

ok

failure: coordinator failure during commit

coordinator!

6.033 | spring 2017 | lacurts@mit.edu

client A-M server

commit

ok

N-Z server

prepare

prepare

commit

ok

failure: coordinator failure during commit

coordinator

coordinator	recovers

commit
commit

6.033 | spring 2017 | lacurts@mit.edu

problem: in our example, when workers
fail, some of the data (e.g., accounts A-M)

is completely unavailable

6.033 | spring 2017 | lacurts@mit.edu

solution: replicate data

but! how will we keep multiple copies of
the data consistent? what type of

consistency do we want?

6.033 | spring 2017 | lacurts@mit.edu

• Two-phase commit allows us to achieve multi-site
atomicity: transactions remain atomic even when they
require communication with multiple machine.  

• In two-phase commit, failures prior to the commit point
can be aborted. If workers (or the coordinator) fail after
the commit point, they recover into the prepared state,
and complete the transaction.  

• Our remaining issue deals with availability and replication:
we will replicate data across sites to improve availability,
but must deal with keeping multiple copies of the data
consistent.

6.033 | spring 2017 | lacurts@mit.edu

