
6.033 Spring 2017
Lecture #19

• Distributed transactions
• Availability
• Replicated State Machines

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

transactions, which provide atomicity and
isolation, while not hindering performance

atomicity
shadow copies (simple, poor
performance) or logs (better

performance, a bit more complex)

isolation two-phase locking

we also want transaction-based systems to be
distributed — to run across multiple machines — and

to remain available even through failures

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C1

C2

S1

S2
(replica	of	S1)

write1(X)

write2(X)

write1(X)

write2(X)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C1

C2

S1

S2
(replica	of	S1)

write1(X)
write2(X)

write1(X)
write2(X)

problem: replica servers can become inconsistent

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

attempt: coordinators communicate with primary
servers, who communicate with backup servers

(backup)

C

S1

S2

(primary)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

(backup)

C

S1

S2

(dead)

if primary fails, C knows
about S2, and switches

!

attempt: coordinators communicate with primary
servers, who communicate with backup servers

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

(primary)

C

S1

S2

(dead)

if primary fails, C knows
about S2, and switches

!

attempt: coordinators communicate with primary
servers, who communicate with backup servers

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

attempt: coordinators communicate with primary
servers, who communicate with backup servers

multiple coordinators + the network = problems

(backup)

S1

S2

(primary)

C1

C2

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

network partition

attempt: coordinators communicate with primary
servers, who communicate with backup servers

multiple coordinators + the network = problems

(backup)

S1

S2

(primary)

C1

C2

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

S1

S2

(primary)

C1

C2

network partition

attempt: coordinators communicate with primary
servers, who communicate with backup servers

multiple coordinators + the network = problems

C1 and C2 are using different primaries;
S1 and S2 are no longer consistent

(backup,	but	
primary	for	C2)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

S1

use a view server, which determines which replica is
the primary

C VS

S2

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C VS

S1

S2

1:	S1,	S2

use a view server, which determines which replica is
the primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C VS

(backup)

(primary)

S1

S2

1:	S1,	S2

pri
mar

y

backup

use a view server, which determines which replica is
the primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C VS

(backup)

(primary)

S1

S2

1:	S1,	S2

pri
mar

y

backup

use a view server, which determines which replica is
the primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C VS

(backup)

(primary)

S1

S2

1:	S1,	S2
S1

primary?

use a view server, which determines which replica is
the primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C VS

(backup)

(primary)

S1

S2

1:	S1,	S2
S1

primary?

use a view server, which determines which replica is
the primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

(backup)

C VS

(primary)

1:	S1,	S2
S1

primary?

S1

"

"
S2

use a view server, which determines which replica is
the primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

handling primary failure

C VS

(backup)

(dead)

S1!

lack of pings indicates
to VS that S1 is down

1:	S1,	S2

"

6.033 | spring 2017 | lacurts@mit.edu

S2

mailto:lacurts@mit.edu?subject=

C VS

(primary)

(dead)

S1

S2

!

1:	S1,	S2	
2:	S2,	--

handling primary failure

"

primary

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

C VS

(primary)

(dead)

S1!

1:	S1,	S2	
2:	S2,	--

handling primary failure

"

S2

primary?

6.033 | spring 2017 | lacurts@mit.edu

S2

mailto:lacurts@mit.edu?subject=

C VS

(primary)

(dead)

S1!

1:	S1,	S2	
2:	S2,	--

handling primary failure

"

6.033 | spring 2017 | lacurts@mit.edu

S2

mailto:lacurts@mit.edu?subject=

C VS

(primary)

(dead)

S1!

1:	S1,	S2	
2:	S2,	--

handling primary failure

"

before S2 knows it’s primary, it will reject any
requests from clients

(and if clients had contacted S1 after it failed but before it was deemed dead, they would
have received no response)

6.033 | spring 2017 | lacurts@mit.edu

S2

mailto:lacurts@mit.edu?subject=

C VS

(backup)

(dead)

S1

handling primary failure
due to partition

lack of pings indicates
to VS that S1 is down

1:	S1,	S2

"

network partition

6.033 | spring 2017 | lacurts@mit.edu

S2

C VS

(primary)

(dead)

S1

handling primary failure
due to partition

1:	S1,	S2	
2:	S2,	--

VS makes S2 primary

network partition

"

primary

6.033 | spring 2017 | lacurts@mit.edu

S2

C VS

(primary)

(dead)

S1

handling primary failure
due to partition

1:	S1,	S2	
2:	S2,	--

problem: what happens before S2 knows
it’s the primary?

network partition

"

primary

6.033 | spring 2017 | lacurts@mit.edu

S2

C VS

(primary)

(dead)

S1

handling primary failure
due to partition

1:	S1,	S2	
2:	S2,	--

it’s okay! S2 will act as backup
(accept updates from S1, reject coordinator requests)

network partition

"

primary

rejected	by	S2

6.033 | spring 2017 | lacurts@mit.edu

S2

C VS

(primary)

(dead)

S1

handling primary failure
due to partition

1:	S1,	S2	
2:	S2,	--

problem: what happens after S2 knows it’s the
primary, but S1 also thinks it is?

network partition

"

6.033 | spring 2017 | lacurts@mit.edu

S2

C VS

(primary)

(dead)

S1

handling primary failure
due to partition

1:	S1,	S2	
2:	S2,	--

also okay! S1 won’t be able to act as primary
(can’t accept client requests because it won’t get ACKs from S2)

network partition

"

rejected by S
2

rejected
	by	S1	

(can’t	g
et	ACK	f

rom	S2)

6.033 | spring 2017 | lacurts@mit.edu

S2

problem: what if view server fails?

C

(primary)

1:	S1,	S2

S1

"

"

!

go to recitation tomorrow and find out!

6.033 | spring 2017 | lacurts@mit.edu

S2

• Replicated state machines (RSMs) provide single-copy
consistency: operations complete as if there is a single
copy of the data, though internally there are replicas.  

• RSMs use a primary-backup mechanism for replication.
The view server ensures that only one replica acts as the
primary. It can also recruit new backups after servers fail.  

• To extend this model to handle view-server failures, we
need a mechanism to provide distributed consensus;
see tomorrow’s recitation (on RAFT).

6.033 | spring 2017 | lacurts@mit.edu

