
6.033 Critique 2: MapReduce

March 10, 2016

1 Introduction

MapReduce, introduced by Google in the epony-
mous paper (Dean, Ghemawat 2004), is a dis-
tributed programming model and implementa-
tion used for automatically parallelizing code to
be run over large datasets. It restricts the per-
missible set of programs to those implement-
ing map and reduce functions which respec-
tively generate and merge a set of intermediate
key/value pairs. [Abstract]

The system designers seek to reduce the
knowledge overhead and boilerplate code re-
quired to easily and effectively design a dis-
tributed programming operation by exposing a
simple and flexible interface to programmers. Its
design is platform-independent and highly scal-
able. We shall focus this critique on Google’s in-
network implementation, which runs on a large
cluster of computers hosted by the company. [3]

2 Background

As increases in processor speed have diminished,
programmers have sought alternatives to keep up
with ever-growing requirements in complex code
and big data. One promising field is that of dis-
tributed computing: programs are executed in
parallel over many machines, taking advantage
of the computing power and memory of the en-
tire cluster.

Distributed programming, however, is very
difficult to do manually. In the best case, the
mental overhead of utilizing multiple comput-

ers requires extensive developer time. In the
worst cases, parallelizing a program introduces
race conditions and unpredictable errors result-
ing from network latency, machine failure, and
variances in runtime across different machines.
As such, many developers have historically hes-
itated to write distributed programs, for fear of
incorrectness.

Other systems have addressed this problem
by, similarly to MapReduce, restricting the set
of programming options and automating the dis-
tributed code. These include Bulk Synchronous
Programming, River, and the Charlotte system,
all of which had features which inspired compo-
nents of MapReduce. However, MapReduce fea-
tures a more complex implementation than many
of these, allowing for a simpler developer inter-
face and easier distributed programming. [7]

3 System Design

The design of MapReduce, and specifically
Google’s implementation, relies heavily on mod-
ularity to allow the automatic distribution of
work. The user program is the first module
to interface with the system. Assuming proper
implementation, the developer specifies the map
and reduce functions, the data source, and de-
fines how the data is to be split.

Then, the MapReduce system automatically
forks this process and copies the code to the map
worker and reduce worker submodules, which
respectively process the code for the map and re-
duce functions. These workers communicate via

1



accesses to local memory on worker machines.
Finally, a single master process is forked onto a
machine. This process communicates with and
manages task distribution across all of the work-
ers, and indicates to the user when the program
is complete. This modularity permits the flexi-
bility and scalability intrinsic to the MapReduce
system.

3.1 Simplicity

The MapReduce system heavily emphasizes sim-
plicity in its design, seeking to allow the ”concep-
tually straightforward” tasks performed by many
distributed programs to be implemented without
concerning developers with the difficult aspects
of distributed programming. [1] This is primarily
accomplished by defining the simple abstraction
of Map and Reduce, which take in predefined
input values and collectively convert these to a
specified output via an intermediate key. [2] This
has been proven to be effective; as of one year af-
ter the original deployment of MapReduce, sev-
eral hundred implementing programs had been
written. [Abstract]

In addition, MapReduce supplies developers
with an extensive set of debugging tools. For
one, a feature is included allowing all of the
MapReduce code to be run locally and sequen-
tially. [4.7] Additionally, the master collects
status information about the running code and
workers and displays this on an HTTP page.
[4.8] These features allow developers to keep
track of their code as it runs and easily diagnose
bugs, improving simplicity.

3.2 Scalability

By nature of its status as a distributed comput-
ing platform, MapReduce is scalable. In general,
this is accomplished by subdividing the tasks
into small chunks, numbering many more than
the count of worker machines. This allows task
scheduling to occur dynamically as some ma-
chines run more quickly or encounter faster sub-
tasks. [3.5] This was shown to be successful, as

demonstrated in the performance metrics in Sec-
tion 5.

One limiting factor to scalability is the heavy
network usage required by MapReduce. The
ethernet-connected worker and master machines
by design pass substantial amounts of data to
and from each-other. The MapReduce system
somewhat mitigates this by attempting to sched-
ule map tasks to workers already holding the
given data, and by having the map workers write
their output to local memory. [3.4] This has the
downside of reduced fault tolerance, however, as
failures in workers can cause stored calculations
to be lost. In general, these alterations seemed to
sufficiently respond to the concerns of bandwidth
resource usage, though I question how fully this
is addressed.

3.3 Fault-Tolerance

The last major design goal of the MapReduce
system is fault-tolerance. The master process,
successfully handles the monitoring and response
to failed workers. By regularly pinging workers,
the master can detect when they fail and reas-
sign their tasks accordingly. [3.3] In addition,
the atomic nature of workers’ final steps for any
given task prevents failures from propagating.

On the other hand, master failures are not
accounted for in MapReduce. Instead, a fail-
ure in the master simply returns an error to the
client. It is assumed that this is rare enough to
be nonproblematic, though this tradeoff seems to
be fairly inconvenient for long-running programs.
[3.3]

Finally, MapReduce responds to faults in
user input by permitting users to instruct
MapReduce to skip bad records. This may be
useful in cases where small numbers of failures
do not affect final results, such as in statistical
analysis. [4.6]

2



4 Conclusions

The MapReduce model attempts to provide a
simple but flexible developer interface for writ-
ing effective distributed programs over large
datasets. It does this by establishing map and re-
duce abstractions which are automatically split

across worker machines, managed by a master
machine. The system focuses on developer sim-
plicity, scalability, and fault-tolerance as primary
goals. MapReduce has been shown to be success-
ful via its impressive benchmarks across common
tasks, and the extent of its use in Google’s pro-
duction code.

3


