The Google File System (GFS), as described by Ghemwat, Gobioff, and Leung in 2003,
provided the architecture for scalable, fault-tolerant data management within the context
of Google. These architectural choices, however, resulted in sub-optimal performance in
regard to data trustworthiness (security) and simplicity. Additionally, the application-
specific nature of GFS limits the general scalability of the system outside of the specific

design considerations within the context of Google.

SYSTEM DESIGN:

The authors enumerate their specific considerations as: (1) commodity components with
high expectation of failure, (2) a system optimized to handle relatively large files,
particularly multi-GB files, (3) most writes to the system are concurrent append
operations, rather than internally modifying the extant files, and (4) a high rate of
sustained bandwidth (Section 1, 2.1). Utilizing these considerations, this paper analyzes
the success of GFS’s design in achieving a fault-tolerant, scalable system while also

considering the faults of the system with regards to data-trustworthiness and simplicity.

Data-trustworthiness: In designing the GFS system, the authors made the conscious
decision not prioritize data trustworthiness by allowing applications to access ‘stale’, or
not up-to-date, data. In particular, although the system does inform applications of the
chunk-server version number, the designers of GFS encouraged user applications to
cache chunkserver information, allowing stale data accesses (Section 2.7.2, 4.5).
Although possibly troubling in a general context, the system designers accepted this

eventuality in their design based on the requirements at Google.

Simplicity: The designers of GFS implemented significantly more complicated storage
mechanisms to account for performance optimizations, as evidenced by comparing the
seven steps required for GFS’s lease-to-write mechanism to the two steps required by the
Sprite Log File System (Section 3.1) (Rosenblum and Ousterhout, Section 3).! While

certainly optimized for completely different applications, the performance goals of the

11t can certainly be argued that this comparison ignores the complexity of segment cleaning,
however GFS’s architecture requires a similar level of complexity in garbage collection (Section 4.4).



designers of GFS mean that the system implementation required a complicated system

when optimized over a distributed system with many concurrent reads and appends.

Fault-tolerance: The designers of GFS provided a high-degree of fault-tolerance across
the system utilizing techniques including load-balancing, check-summing, and many
other features. This consideration is particularly evident in the replicated structure of
chunkservers. Specifically, the master server for GFS is strictly replicated across multiple
machines, and, in turn, the master ensures that all chunkservers are replicated after some
duration of time (Section 5). The system-wide mechanism of replication ensures that any
data losses due to component failures, an assumption made by the designers, are

minimized.

Scalability: Modularity allows GFS to easily expand to account for increasing amounts of
data and users. The paper states that currently the system accounts for approximately 300
TB of information (Section 1); however, the system is designed such that adding more
chunkservers can be accomplished without significantly modifying the master server
(Section 2). Further, the decentralized method of data access that primarily involves
chunkserver-application interaction alleviates significant bottlenecks at the master
(Section 2). The combination of extensibility as well as performance across increasing
amounts of users and data means that the system is entirely scalable within the Google

context.

ANALYSIS

Although certainly fault-tolerant and scalable within the context of Google, as discussed
above, the specificity of the design of GFS minimizes the generalizability of the system
as a whole. To further understand this distinction, this paper will analyze GFS using two

use cases: (1) a Google application and an (2) individual users.

Google Application: Consider some instance of a Map-Reduce algorithm that is
constructing a map of users to buying preferences (i.e. for ads). GFS is certainly a viable

choice for use in this application as it will (1) generate a large (GBs) amount of static,



sequential data and (2) primarily requires reads from the data in the future (i.e. point a
search query to the correct position). GFS is certainly an excellent system for this
application, as the query can generate and access a large amount of data in a distributed

fashion.

Individual Application: Individual users, utilizing GFS to write, for example, a combined
paper critique for a systems design course, would not be able to effectively utilize GFS.
For example, individual modifications and files composed at a small scale are particularly
troubling for GFS. Further, the loose restriction on data integrity would mean that
discrete machines accessing different versions of the chunkserver might threaten the

integrity of the data.

CONCLUSION

The designers or GFS, describe a system that is scalable and fault-tolerant within the
general considerations of Google’s data management needs, yet lacks overall
generalizability to dissimilar data management tasks. The Google File System imposes
task-specificity within the system to optimize performance in exchange for lowered

usefulness in dissimilar data-management tasks.



Works Cited

1. Ghemwat, Sanjay, Howard Gobioff, and Shun-Tak Leung (Google). “The Google
File System.” Symposium on Operating Systems Principles (SOSP) ’03,
Association of Computing Machinery. Published 2003.

2. Rosenblum, Mendel, and John K Ousterhout. “The Design and Implementation of
a Log-Structured File System.” Symposium on Operating System Principles
(SOSP) °92, Association of Computing Machinery. Published 1992.

Note on citation: all parenthetical citations attributed to Rosenblum and Ousterhout are
written as: (Rosenblum and Ousterhout, Section #). All other citations refer to the paper
by Sanjay, Gobioff, and Leung.



