
The Google File System (GFS), as described by Ghemwat, Gobioff, and Leung in 2003,

provided the architecture for scalable, fault-tolerant data management within the context

of Google. These architectural choices, however, resulted in sub-optimal performance in

regard to data trustworthiness (security) and simplicity. Additionally, the application-

specific nature of GFS limits the general scalability of the system outside of the specific

design considerations within the context of Google.

SYSTEM DESIGN:

The authors enumerate their specific considerations as: (1) commodity components with

high expectation of failure, (2) a system optimized to handle relatively large files,

particularly multi-GB files, (3) most writes to the system are concurrent append

operations, rather than internally modifying the extant files, and (4) a high rate of

sustained bandwidth (Section 1, 2.1). Utilizing these considerations, this paper analyzes

the success of GFS’s design in achieving a fault-tolerant, scalable system while also

considering the faults of the system with regards to data-trustworthiness and simplicity.

Data-trustworthiness: In designing the GFS system, the authors made the conscious

decision not prioritize data trustworthiness by allowing applications to access ‘stale’, or

not up-to-date, data. In particular, although the system does inform applications of the

chunk-server version number, the designers of GFS encouraged user applications to

cache chunkserver information, allowing stale data accesses (Section 2.7.2, 4.5).

Although possibly troubling in a general context, the system designers accepted this

eventuality in their design based on the requirements at Google.

Simplicity: The designers of GFS implemented significantly more complicated storage

mechanisms to account for performance optimizations, as evidenced by comparing the

seven steps required for GFS’s lease-to-write mechanism to the two steps required by the

Sprite Log File System (Section 3.1) (Rosenblum and Ousterhout, Section 3).1 While

certainly optimized for completely different applications, the performance goals of the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 It	
 can	
 certainly	
 be	
 argued	
 that	
 this	
 comparison	
 ignores	
 the	
 complexity	
 of	
 segment	
 cleaning,	

however	
 GFS’s	
 architecture	
 requires	
 a	
 similar	
 level	
 of	
 complexity	
 in	
 garbage	
 collection	
 (Section	
 4.4).	

designers of GFS mean that the system implementation required a complicated system

when optimized over a distributed system with many concurrent reads and appends.

Fault-tolerance: The designers of GFS provided a high-degree of fault-tolerance across

the system utilizing techniques including load-balancing, check-summing, and many

other features. This consideration is particularly evident in the replicated structure of

chunkservers. Specifically, the master server for GFS is strictly replicated across multiple

machines, and, in turn, the master ensures that all chunkservers are replicated after some

duration of time (Section 5). The system-wide mechanism of replication ensures that any

data losses due to component failures, an assumption made by the designers, are

minimized.

Scalability: Modularity allows GFS to easily expand to account for increasing amounts of

data and users. The paper states that currently the system accounts for approximately 300

TB of information (Section 1); however, the system is designed such that adding more

chunkservers can be accomplished without significantly modifying the master server

(Section 2). Further, the decentralized method of data access that primarily involves

chunkserver-application interaction alleviates significant bottlenecks at the master

(Section 2). The combination of extensibility as well as performance across increasing

amounts of users and data means that the system is entirely scalable within the Google

context.

ANALYSIS

Although certainly fault-tolerant and scalable within the context of Google, as discussed

above, the specificity of the design of GFS minimizes the generalizability of the system

as a whole. To further understand this distinction, this paper will analyze GFS using two

use cases: (1) a Google application and an (2) individual users.

Google Application: Consider some instance of a Map-Reduce algorithm that is

constructing a map of users to buying preferences (i.e. for ads). GFS is certainly a viable

choice for use in this application as it will (1) generate a large (GBs) amount of static,

sequential data and (2) primarily requires reads from the data in the future (i.e. point a

search query to the correct position). GFS is certainly an excellent system for this

application, as the query can generate and access a large amount of data in a distributed

fashion.

Individual Application: Individual users, utilizing GFS to write, for example, a combined

paper critique for a systems design course, would not be able to effectively utilize GFS.

For example, individual modifications and files composed at a small scale are particularly

troubling for GFS. Further, the loose restriction on data integrity would mean that

discrete machines accessing different versions of the chunkserver might threaten the

integrity of the data.

CONCLUSION

The designers or GFS, describe a system that is scalable and fault-tolerant within the

general considerations of Google’s data management needs, yet lacks overall

generalizability to dissimilar data management tasks. The Google File System imposes

task-specificity within the system to optimize performance in exchange for lowered

usefulness in dissimilar data-management tasks.

Works Cited

1. Ghemwat, Sanjay, Howard Gobioff, and Shun-Tak Leung (Google). “The Google
File System.” Symposium on Operating Systems Principles (SOSP) ’03,
Association of Computing Machinery. Published 2003.

2. Rosenblum, Mendel, and John K Ousterhout. “The Design and Implementation of
a Log-Structured File System.” Symposium on Operating System Principles
(SOSP) ’92, Association of Computing Machinery. Published 1992.

Note on citation: all parenthetical citations attributed to Rosenblum and Ousterhout are
written as: (Rosenblum and Ousterhout, Section #). All other citations refer to the paper
by Sanjay, Gobioff, and Leung.

