

SubMIT:

Redesigned Submission and Grading System for

6.033: Computer System Engineering

at the Massachusetts Institute of Technology

Jeremy Cowham, Christian Moroney, and Russell Pasetes

MIT Department of Electrical Engineering and Computer Science

{ jcowham, cmoroney, rpasetes } @mit.edu

Recitation Instructor: Mohammad Alizadeh

WRAP Instructor: Juergen Schoenstein

TA: Steven Okada

Time: TR 1PM

May 6, 2019

1

Table of Contents

Introduction 2

System Overview 2

File System 3

Databases 4

Student Interactions 5

 Assignment Organization & Access
 Assignment Storage
 Submission Function
 Team File Sharing

5
6
6
8

Staff Interactions 10

 Grades & Comments
 Late Penalty
 Grade Publication
 Gradescope Integration
 Grade Collection

10
11
11
12
13

Server Processing 13

 Storage Resource Allocation
 Computing Resource Allocation
 Data Transfer Protocol

13
14
14

Evaluation and Use Cases 16

 Late Drop
 Bulk Account Creation
 Bandwidth & Speed
 Scalability
 Threat Model

16
16
17
17
18

Conclusion

Individual Contributions

Acknowledgments

18

18

18

2

Introduction
The MIT class ​Computer System Engineering (6.033) currently utilizes a range of

systems for handling files, submissions, and grades in a way which is problematic for
students and staff alike. These issues include but are not limited to: split systems for
handling grades, poor implementation of submission sites, and the lack of a platform
supporting shared group work. These problems have plagued the 6.033 community for too
long, and a new system needs to be designed. Focused on solving these problems, we
design a new system for 6.033, named “SubMIT”, that leverages existing systems, but
reengineers the implementations and interactions in a way which best meets the needs of
students and staff.

A central server that communicates with all students and staff provides the
foundation for our system. In designing SubMIT, we identified the core design principles of
simplicity, security, ​and ​utility​. Simplicity of the system means, for example, enabling
students from different academic backgrounds to adapt quickly to the logistics of the class.
We emphasize the intuitiveness of the storage and file management system, promoting
safe and effective work by students and staff alike. Furthermore, the security of SubMIT
means avoiding technical failures, ensuring storage safety, and thwarting malicious activity.
Finally, the utility of SubMIT means, in essence, addressing significant user needs. This
principle informs design decisions so that trade-offs and compromises are settled in a way
which achieves simple, user-optimal solutions. SubMIT facilitates the communication
between and among users and infrastructure services to meet the needs of students and
staff.

System Overview
Our system utilizes the infrastructure services at our disposal: the MIT ID service

(MIDS) based on the Kerberos system, the MIT File System (MFS), the MIT Sync Service
(MSS), the MIT Locking Service (MLS), and Gradescope. Our system establishes a
multipurpose platform that supports graded assignments for students in 6.033. Every
communication request made by a user, either staff or student, will first be interfaced
through a submission website that authenticates requests through MIDS in order to
coordinate with SubMIT and sets proper access parameters. This enforces a secure
framework for student and staff interactions. Within the server, we store all student data
sent to SubMIT in the file system hierarchy. We delegate access control to concurrently
shared files between Design Project teams through MLS. Additionally, we update our
databases with information as students submit assignments. The databases are only
accessible by staff, and handle many of the features staff needs in order to run the class.
Staff possesses the ability to share data from the databases with student’s individual
folders for assignment feedback.

3

Figure 1: ​The main interactions of our system with users. Students and staff access our system
via remote computers. MIDS validates user access for all requests. MLS dictates who can read or
write to files in the MFS hierarchy. Gradescope periodically will report grades to the SubMIT
server. Students will upload an assignment to either Gradescope or SubMIT and receive feedback
for the assignment on the respective system.

File System
The main goal in design of the SubMIT file system was to design an understandable

hierarchy that was simple for students, a course lecturer, and various recitation instructors
or teaching assistants to interact with. With these design goals in mind, we structure our
file system in a way that has an ​all_students ​directory along with a ​recitation_X ​directory for
all recitation sections for the given class. This structure provides the foundation for the
folders that students will interact with on the submission site. Displayed below (Figure 2)
are the various ​views ​different clients of the system will use. We limit students to viewing
their own specific kerberos files along with their design project team folders. Additionally,
we limit staff to only viewing the recitation directories with which they are associated,
reserving total access to the file hierarchy for the course lecturer. We provide the course
lecturer additional space in the root directory to store metadata, flags of data issues in the
SubMIT system, such as when communicating with Gradescope, and additional information
that the lecturer deems necessary to store. This design choice ensures simplicity as clients
only interact with data that they should be concerned with, along with a layer of security.

4

Figure 2: ​This figure displays the directories found in our root directory of our SubMIT server’s
file system along with the scopes of the various users of our server: course lecturer/staff,
recitation teams, and students. Note: recitation teams and students’ directories take the same
format.

Databases
SQL databases are an ideal data structure for storing repeated, similarly-formatted

information and metadata. There are several components of 6.033 which match this
criterion including assignments, submissions, grades, and video voting. SubMIT, therefore,
uses three databases: an assignments definition database, a combined submission and
grades database, and a video voting database.

The assignments database contains a record of all course assignments and stores
the following fields for each entry: assignment ID, link to assignment description, assigned
to boolean (0 for individual, 1 for team assignment), due date/time, grading permissions for
staff, percentage of final grade, late policy, submission required boolean (some
assignments, like recitation grades and DP presentations, do not require a submission),
and Gradescope boolean (whether the assignment is to be graded on Gradescope or
SubMIT). This database is required to be formed prior to the start of the semester, as when
bulk creation of accounts and folders occurs, this database will serve as the template for
the Kerberos-specific folders. We assume the course lecturer will have the knowledge prior
to the start of the term regarding what assignments will be included throughout the
semester. While assignments may be updated, configuring assignments before the start of
semester provides convenience for staff.

In order to maintain the link between submissions and grades, these components
are unified into one database. To accomplish this, each assignment for each student will

5

have a database entry, even assignments with no submission. SubMIT maintains the
following fields for entries in this database: assignment ID (identical to the corresponding
assignment database entry), submitter Kerberos, date/time of submission, address of the
submission in the file system (null if on Gradescope), the grade (null until entered), an
optional comment field, ​published ​boolean (0, or private, by default), a multiplier for late
penalty (1 by default), and a Gradescope boolean. We store both grade and optional
comment fields as lists, as this supports the concurrent uploading of feedback from
multiple staff members at the same time. A recitation instructor can append their grade
and comments at the same time as a WRAP instructor. If one instructor publishes feedback
before the other is able to upload their feedback, we automatically update the file system
with all grades and feedback for assignments where the ​published ​boolean is 1.

Recording votes on video submissions will be done through a database specially for
this purpose. Entries in this database will maintain the following fields: submitting team
Kerberos, address of the video in the file system, and a tally of votes received for each
respective rank (from 1-5). The tally of votes is acquired through the parsing of assignment
completion that comes from the students that rank the videos.

One final component of SubMIT databases is a “completed” bit appended at the end
of each entry of each database. Zero by default, this bit ensures atomicity of data transfers,
and is discussed in detail in the data transfer protocol.

The choice to include these databases was to build further on our design goal of
simplicity of user interactions. We believe that each of these databases serve a unique
purpose to the overall functionality of our system.

Student Interactions

Assignment Organization & Access

Only the Course Lecturer, head WRAP Instructor, and Administrative TA have read
and write access permissions for the ​all_students directory because the staff may need to
add or remove students as registration changes. This folder is hidden from all students to
ensure that a student cannot access another classmate’s directory.

Each recitation subdirectory gives read and write access permissions only to the
corresponding Recitation Instructor, Recitation TA, and WRAP Instructors. Within each
recitation subdirectory are symbolic links to the student directories in ​all_students ​within
that recitation section. Each student has read and write access to their own student
directory along with the directory created once design project teams are formed.

Once teams are formed, a team directory is created using
create_dir​(kerb1,kerb2,kerb3,kerb4=null) for all Design Project (DP) teams within the
recitation section. These team directories can only be created if and only if all team
members’ individual directories exist within the same recitation section. Furthermore,
these team directories exist in the recitation section subdirectory that the students are
assigned to. All team members within a DP team are given read and write access to their

6

corresponding team directory. We also place a lower limit on the minimum number of
students in a given team. This ensures that there will be multiple teams of three students,
with a few edge cases of four students on a DP for the overall class.

We design SubMIT’s assignment storage in this way to support overall simplicity of
student interactions. We believe that storing assignments in this way is logical and
understandable, which avoids students finding themselves confused and decreases
likelihood of client-side errors. Not only is this structure beneficial for simplicity, but also
security. With the proper access control, we avoid students obtaining files or other data
that they are not supposed to be possessing.

Assignment Storage

Inside each student directory, subdirectories are created that hold each individual
grading element for the class. Each individual assignment subdirectory is created based on
the entries within the assignment database at the start of the semester, which is only write
accessible by the Course Lecturer. For the purposes of 6.033, there exists three
subdirectories: reading questions, critiques, and peer reviews. These subdirectories allow
for the upload of multiple files if a student decides to submit an assignment more than
once. Inside each team directory, subdirectories are created that hold each team grading
element for the class: the Design Project Preliminary Report (DPPR), the Design Project
Report (DPR), and the Poster Video. Similarly, these subdirectories allow for multiple file
uploads if a team decides to submit an assignment more than once, with the exception of
the Poster Video. In the event of multiple Poster Video uploads, we overwrite previous
submissions. We choose to design SubMIT in this way to avoid large amounts of memory
being allocated to video storage, where staff will only be checking the most recent
submission. In these student/team directories, we allocate space for students to work on a
editable files, which can be ultimately submitted via the subMIT server, but saved as
progress is made. SubMIT does not keep a fully history of these files, but rather stores one
copy. However, SubMIT does store a full history of submissions to the server for a given
assignment.

Submission Function

In order to support the submission of assignments, we provide students and DP
teams with the function ​submit_assignment(​filename, assignment_ID), which gives students
the ability to set a file as a submission for an assignment to the given directory if they hold
the proper Kerberos ID permissions. A copy of the file is created within the specified
directory and is tagged as the most recent submission with a timestamp of when this
function was called. Any previously uploaded file will retain their timestamp tags but only
the tag with the most recent timestamp will be recognized as the submission considered
for grading.

Once the file is copied in the directory, ​submit_assignment will populate the
corresponding assignment ID entry that’s tied to the matching Kerberos ID within our

7

submission and grading database. The date/time of submission will be filled by the
submission timestamp and the address of the submission will be a pointer to the
assignment within our file system. Once these fields are populated, the submission is ready
for grading by staff. If the database entry is already populated, only the date/time of the
submission and address of the submission will be updated with the most recently
uploaded submission.

Figure 3: ​(A) ​As a student with kerberos cmoroney submits a file for Assignment 1 (System
Critique 1) we populate the cmoroney subdirectory labeled Assignment 1 with a copy of the
submission file. ​(B) ​the process of submitting this file starts the process within the SubMIT Server
where SubMIT updates the submission and grading Database with the appropriate entry. ​(C) ​At a
high level, the process of submitting assignment 1 from kerberos cmoroney causes the updating
of the specific entry in the database. Note: students do not know that they are interacting with
this database, the updating of the database is handled completely within SubMIT.

8

Team File Sharing

Group projects constitute a significant component of the 6.033 curriculum, so
SubMIT implements a team file sharing mechanism which strikes a balance between
real-time concurrent editing and exclusive editing ability.

SubMIT designates files as either concurrently editable (CE) or non-concurrently
editable (NCE). CE files allow team members to check out portions of a shared text file by
section. To accomplish this, CE files must follow strict formatting guidelines: each section
available for check-out must have a unique section title (e.g. “Introduction”, “Student
Interactions”). These unique titles must be present in a table of contents and be an ​exact
match. These titles will be used to delineate each editable section. A section includes its
title and any text up to but not including the title of the next section. NCE files are much
more versatile, as they do not need to adhere to a strict format; however, as the name
implies, only one user may edit an NCE file at a time. NCE files can include PDFs, images
files, and even text files designated as such.

Figure 4: ​The shared file in the diagram will exist in a DP team’s subdirectory for the specific
assignment. Student 1 with kerberos, cmoroney, can select portions of the document to
‘check-out’ and work on. This prevents any other student, such as student 2 with kerberos
rpasetes, with write access to the portions of this document already checked out. The respective
red and blue sections of the assignment illustrate the sections currently ‘checked-out’ and the
work capable of being done on by separate clients for the same file on separate devices.

9

We handle the complex challenge of CE files by identifying sections in the file based
on the bytes in which the section starts and stops through identifying sections in the table
of contents. In a metadata folder in an assignment-specific folder, which is in the design
team’s personal directory, we store these byte values to keep track of sections along with a
mapping of the section title to the byte value associated with the start of the section. When
a team member wants to work on a given section of the file, they ​checkout ​that section by
acquiring a lock on this section. This member solely possesses the ability to edit this
section, until it is checked back into the system, at which point the lock is released. This
ensures that multiple members can be working on different sections at once.

While a section is checked out, other team members have access to view the most
recently checked in version of the section. This version control saves all check ins for every
section of a file in the assignment directory. In the event that a section has changed in
overall size, in other words, the difference in bytes between the start and end have
increased or decreased, the section that is sequentially after it on the file will have its new
start and end byte values updated in the metadata. SubMIT continues the process to shift
all start and end bytes that are affected by the change.

This team file sharing scheme aims to do away with the resource-intensive
processes and costly application design for a service like Google Docs, but also provides
teams with the ability to concurrently edit the most common type of 6.033 group
assignment: text documents. We design SubMIT in this way to achieve a more simple
process of team collaboration on assignments. As alumni of 6.033, we design with this
approach based on our own experience with team assignments. We recognized that
essentially all assignments submitted as a team are files taking on the form similar to a
research paper, or thesis. With multiple sections of the paper, our approach to completing
the final deliverable was divvying up sections to write up individually, and merge these
sections together for the final product that would be submitted. We acknowledge the
design tradeoff of slight overhead, and increased backend complexity to achieve a more
simple and understandable interface for design teams to collaborate with.

10

Staff Interactions
Grades & Comments

Figure 5: ​The logic behind our database for submission and grading. Staff can pull the file that a
student submitted for an assignment, grade that assignment, and then upload the grade to the
Database. This field in the database is also able to store comments that staff has the option of
filling in.

With the student assignments stored on our SubMIT server and Course Staff able to
access students files with read or write privileges, we provide staff the capability to supply
feedback to students. Within the file system on the SubMIT server, we allocate space for a
database that will be accessed by relevant staff to provide feedback to students for
assignments. This feedback can take the form of either a strict letter grade or a grade and
some comments. Relevant staff for grading of an assignment will access the database and
query for the recitation section that they are associated with and for the particular
assignment they are grading. Staff members then have access to all the files that need

11

feedback. Once the staff member has determined the grade and comments, they can
upload these to the SubMIT server. This process strictly updates the database with the
information provided by staff. Furthermore, this uploading of data tags it with the kerberos
of the grader and stores it in both the grade and comment sections. The publication of
these grades is handled separately.

Late Penalty

Within the metadata of each uploaded file is a timestamp of the time of submission,
which will be automatically checked against the due date of the given assignment and will
apply the appropriate penalty based on the policy explicitly stated on each assignment
(both accessible by the assignment database). This is done by adjusting the late penalty
multiplier in the submission and grading database. Administrative staff have the option to
waive the penalty applied to any given assignment, based on extenuating circumstances
(eg. note from an S3 dean). To provide slight leeway to students, late penalties will not be
enforced until 10 minutes after a deadline to alleviate stress of network traffic (large
portion of submissions right at the deadline).

Grade Publication

Figure 6: ​Staff utilizes the publication function to send the data stored in the Grade and
Comment section of the Submission & Grading Database into each student’s specific assignment
folder. This gives students access to view the grade feedback.

Once staff has completed inputting grades and comments into the database, staff
utilizes the ​publication ​function on the SubMIT Server to update student’s specific

12

assignment folders with a file that stores information regarding the grade feedback. This
file includes both the grade received and the comments for the assignment if staff provided
any. Furthermore, this stores the information about who provided the feedback for that
assignment. ​We provide the ​publication ​function only once staff has graded an entire
recitation’s submission for an assignment. We design the system in this way to ensure that
staff is not burdened with the task of manually publishing every grade for each individual
student, as this repetition might lead to human error on the staff side. Furthermore, this
design choice emphasizes the simplicity of our system, as staff only has to worry about
publishing on a per assignment basis for their given recitation.

Gradescope Integration

As our system is the primary source for grade feedback for 6.033, we design SubMIT
in a way that it interacts with Gradescope to maintain an eventually consistent report of
Gradescope grades. As some assignments for the course require submittal via Gradescope,
SubMIT communicates with Gradescope to update student’s grades on the SubMIT Server.
For an assignment that is handled in Gradescope, we store a directory on the SubMIT
Server in every student’s personal directory for that assignment. In times where activity
from clients of SubMIT is expected be low, specifically in the morning at 4am, we pull a
snapshot of the current grades on Gradescope to update the SubMIT file system with. We
then iterate through the snapshot and upload grade information into each students
kerberos-specific folder and upload a file containing grade information into
assignment-specific folders. We perform this in times of low activity to avoid jamming the
network with traffic for an operation that we hold to lower priority than student or staff
data uploads. In the event that there is a grade for a student that is not identified in the
all_students_directory we flag this attempted entry, and notify the course lecturer. The
course lecturer can determine what the error was, and take necessary actions to handle
the situation. However, in the event that a student drops the course, we store this student’s
kerberos in a file stored in a personal directory in the root for the course lecturer to view.
In scenarios where Gradescope attempts to sync information and a kerberos is not found,
we do not flag failed entries if the kerberos exists in the file of dropped students. We
design the system in this way because we determine that these errors happen rarely, and
can be handled by the head lecturer in the event that they occur.

We assume students do not need to see Gradescope grades on the SubMIT server
immediately as they are posted on Gradescope, which justifies our idea of eventual
consistency between the two systems. Furthermore, staff will have a solid idea of the time
it takes to grade assignments, and thus our system will perform these pulls of Gradescope
data every week after the due date for these assignments. We also assume that staff can
set deadlines for regrade requests, and thus can perform another pull a week after regrade
deadlines to update any information that may have changed.

13

Grade Collection

The Submissions & Grading database serves a great function of separating staff
interactions with grades from student interactions with grades. The database allows for
concurrent addition of grades from multiple staff members, and the multiple fields of
specificity allow for the querying of grade reports. Staff members will be able to clarify what
recitation or assignment they wish to see all the grades for. The database also serves the
function of being the template for the end-of-term spreadsheet for the grades meeting. We
assume that there will be virtually no activity on the server at the end of the term, as
students will have all assignments submitted. This allows for the SubMIT server to have the
processing allocation necessary to support this feature.

Server Processing

Storage Resource Allocation

The SubMIT server boasts 240 GB of duplicated disk storage which must be
allocated prudently. There also exists another 16 GB of main memory; however, this
storage is discussed in the next section as it relates to short-term memory usage.

There are three main categories of data SubMIT will maintain in long-term memory:
OS kernel code, student assignment submissions, and staff databases. As we modeled
SubMIT after the Unix file system, Linux is a viable choice of software for the server.
Installation of Linux typically requires 4 - 8 GB of space , so 8 GB is a reasonable estimate 1

for space occupied by the OS kernel. For written student submissions, the calculation
becomes a bit more intricate. According to details from the DP description, there are
approximately 40 assignments per semester, 36 of which are submitted individually and
four of which are submitted as a team. In 6.033, individual assignments tend to take a more
strictly text-based format, while group papers often require images, which affects the
relative file sizes. In calculating file counts, we must also differentiate between finals
submissions and working drafts, each of which there may be many for a single assignment
for a single student or team.

In the following formula, let Q be the number of recitation questions, C the number
of critiques, and R the number of peer reviews. For team assignments, P represents the
DPPR, D the DPR, and V the video. Each of these is an assignment with a submission
through SubMIT. The coefficient of each variable is the expected size, in megabytes, of each
submission.

Students (0.02Q 0.1C 0.06R) #Teams (0.3P 0.6D 100V) # + + + + + =

00 (0.02 5 0.1 0.06) 150 (0.3 0.6 100) 5399 MB≅16 GB4 * 2 + + + + + = 1

1 ​https://www.zdnet.com/article/how-to-disk-partitioning-for-linux-and-windows-dual-booting/

https://www.zdnet.com/article/how-to-disk-partitioning-for-linux-and-windows-dual-booting/

14

We can see that video storage is the most significant portion above, accounting for
about 96% of total student submission storage allocation. Fortunately, it is still only a
fraction of the total available disk space. Lastly, we were able to build model SQLite
databases on our own machines to estimate the overhead and cost of data storage for our
three SubMIT databases. The assignments database should have about 40 entries. The
submissions database should have about:

 Students Individual Assignments Teams Team Assignments# * # + # * # =
00 6 50 5000 entries4 * 3 + 1 * 4 = 1

The video rankings database should have about 150 entries. Modeling these

numbers with dummy data, the total size is on the order of several megabytes. In other
words, these databases will not require significant storage resources.

In conclusion, expected storage on disk is about 25 GB for one semester’s worth of
material. This gives us a significant buffer in case of underestimation.

Computing Resource Allocation

There are five main processes the SubMIT server will need to handle: processing
shared file syncs, processing incoming grades and comments, retrieval of files, grades, and
comments, processing miscellaneous tasks like applying late penalties and late drops, and
processing assignment submissions. Among these duties, the last--processing assignment
submissions--differentiates itself as being critically high priority. Processing or retrieving
files, grades, and comments is a next priority insofar as users expect these tasks to
complete in a reasonable amount of time. Miscellaneous tasks, finally, need only happen
within some reasonable amount of time.

To manage and prioritize requests from clients, SubMIT implements a request
queue for processor allocation. The request queue prioritizes assignments submissions,
then level-two priority tasks, and finally miscellaneous operations. By coordinating with the
SubMIT web interface, requests and uploads are not initialized until the server has
processors available. In addition, within ten minutes before a deadline, at least two
processors are specially dedicated for receiving incoming submissions, ensuring that
processors are not fully occupied at this time.

Data Transfer Protocol

Utility is one of the central design goals of SubMIT, and a speedy, responsive user
experience is certainly one component of utility. For this reason, we designed the SubMIT
data transfer protocol (DTP) to best manage the types of data streams being uploaded to
and downloaded from the server. In designing the DTP, one of the first considerations was
simply: what kind of files and data will we be transferring? Secondly, how reliable does the
transport of these data need to be? Some files, like videos, will be on the order of hundreds
of megabytes while others, like pulling a single assignment grade and comments, might be

15

on the order of only kilobytes. Transmission Control Protocol (TCP) makes a suitable choice
of underlying transport protocol, as loss of portions of assignment submissions or grades
is not acceptable for the SubMIT system. Guaranteed in-order delivery of packets from
sending to receiving application, even at the cost of some speed, is a necessary feature of a
consistency-critical system like SubMIT.

After choosing TCP, another essential question was the trade-off over the size of
packet payload, where decreased payload size increases metadata overhead, particularly
for small data transfers, while increased payload size magnifies the effect of packet loss on
transfer latency. In analyzing the asymptotic runtime for a file transfer, where ​n ​is the
number of bytes to send and ​L ​is the loss rate of the network, we arrive at the following
recurrence for transfer time:

(n) 1)T (n) (n)T = (− L + O

For TCP, we estimate an average loss rate of 5%; however, for any , this recurrence is L < 1
linear in n. This indicated to us that perhaps the risk of packet payloads being too small is
more significant than the risk from loss of large packets. With the total size of the IP header
(~20 B) and TCP header (~20 B) coming to 40 bytes or 0.04 kilobytes, a packet payload size
of 1 kilobyte would give a payload to header ratio of about 25:1. Considering, as well, that
the smallest data transfers for SubMIT will happen on the scale of kilobytes, SubMIT
segments data transfers into chunks of about one kilobyte for each packet payload.

In addition to considering packet size, it is important to consider what data is sent,
and when. While TCP ensures packet delivery and ordering, the transport layer has no
notion of abstract data structures like assignments or submissions. For uploads to the
server, the SubMIT DTP specifies three stages of data transfer between the client through
the SubMIT website and the SubMIT server: information about the request, a file transfer (if
applicable), and a confirmation. The first stage can usually be encapsulated in a single
packet. At a minimum, all information stage packets contain the authenticated Kerberos of
the user, the request type (an integer, e.g. 0 for assignment creation, 1 grade retrieval, ...),
and the time of sending. Depending on the type of request, there may be auxiliary
information included in this packet, like information to include in a database entry if
applicable to the request. In the file transfer stage, any documents or videos associated
with a request will be uploaded. The final packet sent in this upload will set the FIN TCP flag
to 1 to signify finality. When the SubMIT server receives this packet, we enter the final DTP
stage: confirmation. In addition to sending an ACK, the SubMIT server sends a confirmation
packet to the client, confirming that the transaction specified by their request is complete.

If the request appends or modifies a database entry, we treat the entire data
transfer as an atomic unit. By default, information stage packets which induce a database
appension or modification will set the “completed” bit for that entry to 0. In the case that a
file upload fails part way through, there will exist a database entry recording the user, time
of submission, and other details; however, the transaction will not be confirmed to have
completed. If a transfer is taking much longer than expected (i.e. the completed bit is 0

16

after some extended amount of time), SubMIT will send an email notification, in addition to
displaying so on the website dashboard, that the request/upload failed.

Evaluation and Use Cases
Late Drop

Given that any student within 6.033 has the option to drop the class as the semester

progresses, the Administrative Staff must update the file system to reflect that the student
is no longer able to participate in the submission/grading process. Our hierarchical file
system allow the staff to easily remove an unregistered student from our server through a
function provided by our system: ​dropped_student(kerberos) ​which removes the student’s
associated directory within ​all_students, ​all symbolic links to the directory across the file
system, and all of the student’s corresponding submission and grading database entries.
Any updates pulled from Gradescope that contain information of the dropped student will
not affect the system, since the associated database entries will be removed and
Gradescope data will be unable to sync with the database. All read and write permissions
are also revoked from the student by MIDS to prevent any unintended or malicious
overwrites to individual and team assignments.

Bulk Account Creation

At the beginning of the term, accounts are set up for all students that are registered
in the class through the function ​make_student_dirs(class_list). This populates the ​all_students
directory with a folder for each student’s associated kerberos, wherein each student folder
contains directories for each individual assignment based on the entries within the
assignment database. Students are also given read and write access to their own directory
through MIDS.

For recitation section assignments, we assume that staff handles the logistics of
scheduling students into recitation sections separately from SubMIT and provides a
student : recitation map to another function, ​make_recitation_dirs(recitation_map). This
populates the root folder with a directory for each recitation section, which contains
symbolic links to the student directories in ​all_students that are assigned to that recitation
section.

Since both functions are only creating directories for the submission function and
creating permissions, setting up all of the student accounts at the beginning of the
semester should take a minimal amount of time. Furthermore, we assume that the course
lecturer will have communication with MIT’s registrar to get this list soon, and begin the
process before the term begins. This allows for the simple process of taking out a small
number of students who do not take the class versus waiting for the class list to be figured
out, and to jam server traffic at the start of the term with populating the directories.

17

Bandwidth & Speed

A central challenge with managing bandwidth and designing for a speedy user
experience is managing bulk submissions at the deadline. We focus on this worst case
because, in designing for it, SubMIT will be able to handle lower levels of throughput quite
easily. Imagine it is 11:55 PM, and 400 students are submitting system critiques about 100
KB in size. The bottleneck throughput in the transport network is most likely edge device
upload speed at 500 Mb/s. At this speed, a system critique would upload in:

00 KB .8Mb .0016 s 6 ms1 = 0 * 1

500
s
Mb = 0 = 1

The SubMIT server processors have a clock speed of 2.1 GHz, so under the assumption that
the processors are pipelined but occasionally stall, we assume we can read or write one bit
per two cycles per processor, or 1.05 billion bits per second per processor. In 16
milliseconds, this gives:

050000000 6 ms 6800000 bits .1 MB1 s
bits * 1

1000
s
ms * 1 = 1 = 2

Thus, even with some variation in actual performance, dedicating one processor per

upload should be sufficient. Total expected time spent uploading therefore is:

6 ms 400 6400 ms .4 s1 * = = 6

By leveraging the SubMIT computing resource allocation scheme, even if everyone

submits right be the deadline, the server should be able to handle the submissions.
In designing SubMIT, we recognize that brown-outs are an uncontrollable effect of

the network at MIT. We assume that students will not be overly concerned if speed of
interactions with the system decline for a short period of time. Additionally, we assume
that staff can acknowledge the time of a brown-out. In the event of one close to submission
time, we provide the course lecturer with the ability to update the Assignment Database
with an extension of time. We do not address a solution to this problem more aggressively
as we believe that it does not severely affect our design goals. We rely on course staff to
handle edge cases in these situations as we aim to provide simplicity for clients, not
efficiency.

Scalability

We design SubMIT in a way that supports applications to multiple classes across
multiple MIT departments. SubMIT possesses an understandable architecture that aims to
provide clients with simplicity of interaction from multiple aspects of submission and
grading. The wide range of assignments in 6.033 constructs a sturdy framework for similar
assignments encountered in other classes. The ability to include/exclude assignments from

18

the database allows for the adjusting of the framework for which student files will be
created. By designing SubMIT to meet the design goals of simplicity, security, and utility, we
achieve scalability and applicability to other classes.

Threat Model

Security is one of our central design goals for SubMIT, as we want to ensure our
users are using a reliable system that protects from malicious grade manipulation or
submission edits/deletions. This is achieved by our handling of permissions through our
MIDS implementation that follows the guard model. To ensure that only students and staff
can access SubMIT, we modify our MIDS implementation to store salted hashes of user
passwords, so adversaries can’t breach our server through the construction of a rainbow
table. This is under the assumption that students and staff act ethically and proper
oversight of the system is enacted to prevent misuse.

Conclusion
SubMIT utilizes a dual file system hierarchy and structured databases with limited

access via security at multiple levels, to provide students and staff with a simple system
that handles all work and supports staff feedback for grading. By limiting access to files and
utilizing our checkout system for student assignment work our system enables students to
confirm confidence in the safety and privacy of their work. Furthermore, our SubMIT server
hides many of the logistical complexities from students such as dividing them up into
recitations and tutorial sections. With the structure and modularity of SubMIT server we
deliver a ​simple and ​secure framework for students, while still providing staff the tools
necessary to address needs for operation of the class, and overall ​utility ​for both users.
Future iterations of SubMIT will uphold current design principles and develop more ​efficient
and ​robust ​storage and sync services to improve the quality of users utility.

Individual Contributions
As a design team, we collaborated to iteratively construct our system’s architecture,

ensuring design goal motivations for design choices. Russell blueprinted and implemented
student interactions with the system, Christian designed staff interactions with the system,
and Jeremy modeled server processing and data transfer protocol. All team members
worked on integration of modules and overall system evaluation.

Acknowledgments
We would like to thank Mohammad Alizadeh and Steven Okada for technical

feedback on our design, Juergen Schoenstein for his guidance on our written report, and
Katrina LaCurts along with the entire 6.033 staff for their teaching and instruction.

