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0. Introduction
  - Last week: how to route scalably in the face of policy and economy
  - This week: how to transport scalably in the face of diverse
    application demands

1. TCP
  - Goals: provide reliable transport, prevent congestion
  - Broader questions: how do we do this scalably, and how do we share
    the network efficiently and fairly?
  - Today: TCP Congestion Control
    - In particular, a version of TCP known as "New Reno"
  - Next lecture: An alternative approach to "resource management" on
    the Internet

2. Reliable Transport via sliding-window protocol
  - Goal: receiving application gets a complete, in-order bytestream
    from the sender.  One copy of every packet, in order.
  - Why do we need it?  Network is unreliable.  Packets get dropped,
    can arrive out-of-order.
  - Basics:
    - Every data packet gets a sequence number (1, 2, 3, ...)
    - Sender has W outstanding packets at any given time.  W = window
      size
    - When receive gets a packet, it sends an ACK back.  ACKs are
      cumulative: An ACK for X indicates "I have received all packets
      up to and including X."
    - If sender doesn't receive an ACK indicating that packet X has
      been received, after some amount of time it will "timeout" and
      retransmit X.
      - Maybe X was lost, its ACK was lost, or its ACK is delayed
      - The timeout = proportional to (but a bit larger than) the RTT
        of the path between sender and receiver
    - At receiver: keep buffer to avoid delivering out-of-order
      packets, keep track of last-packet-delivered to avoid delivering
      duplicates.

3. Main motivation
  - What's the "right" value for W?
  - In particular, what if there are multiple senders?
    - Ex:

      S1 -- 2 Mb/s -- A ---- 2 Mb/s ---- B -- 2 Mb/s -- D1
                      |                  |
      S2 -- 2 Mb/s ---                    -- 2 Mb/s -- D2

    - What should happen?  Debatable.  Reasonable alternative:



      S1 -- 1 Mb/s -- A ---- 2 Mb/s ---- B -- 1 Mb/s -- D1
                      |                  |
      S2 -- 1 Mb/s ---                    -- 1 Mb/s -- D2

    - How do S1 and S2 figure this out?  What happens if S3 arrives?
      Or if S1 starts sending less?  Etc.

5. Congestion Control: controlling the source rate to achieve high
   performance
  - Goals: Efficiency and fairness
    - Minimize drops, minimize delay, maximize utilization
    - Share bandwidth fairly among all connections that are using it
  - FOR NOW: assume all senders have infinite offered load.  Fairness
    = splitting bandwidth equally amongst them.
  - But no senders knows how many other senders there are, and that
    number can change over time.
  - We'll use window-based congestion control.  Switches are dumb
    (can only drop packets); senders are smart

6. AIMD
  - Need a signal for congestion in the network, so senders can react
    to it.
  - Our signal: packet drops
  - Every RTT:
    - If there is no loss, W = W+1
    - If there is loss, W = W/2
  - This is "Additive Increase Multiplicative Decrease" (AIMD)
  - Senders constantly readjust => adapt to a changing number of
    senders, or changing offered loads
  - Window size exhibits sawtooth behavior (see slides)
  - Why AIMD?
    - It's "safe": senders are conservative about increasing, but
      scale back dramatically in the face of congestion
    - Efficient and fair

7. Finite Offered Load
  - Remove the assumption that everyone has infinite offered load
  - Suppose S1 and S2 have offered load of 1Mb/s, S3 has offered load
    of .5Mb/s, and they all share a bottleneck with capacity 2Mb/s
  - What happens?
    - In theory: S3 stops increase once it's sending .5Mb/s.  S1 and
      S2 continue increasing until they reach .75Mb/s
  - Is this fair?
    - In some sense.  It achieves a type of fairness known as "max-min
      fairness".  But there are other definitions (e.g., "proportional
      fairness")
  - What happens in practice?
    - We might get max-min fairness, or one of the senders might
      experience a much longer RTT and so not increase its window at



      the same rate.
  - So: TCP's congestion control utilizes the network reasonably well,
    but it's hard to measure fairness, or claim that fairness is
    achieved under skewed workloads, varying RTTs, etc.

8. Additional Mechanisms
  - Slow Start
    - At the beginning of the connection, exponential increase the
      window (double it every RTT until you see loss)
    - Decreases the time it takes for the initial window to "ramp up"
    - (See slide for diagram)
  - Fast Retransmit/Fast Recovery
    - When a sender receives an ACK with sequence number X, and then
      three duplicates of that packet, it immediately retransmits
      packet X+1 (remember: ACKs are cumulative)
      Ex: Send    1 2 3 4 5 6
          Receive 1 2   2 2 2
          Sender receives 4 ACKs total with sequence number "2";
          infers that packet 3 is lost, immediately retransmits
    - On fast-retransmit, window decrease is as before: W = W/2
    - In fact, when a packet is lost due to timeout, TCP behaves
      differently: W = 1, then do slow-start until the last good
      window, and then start additive increase.
    - (See slide for diagram)
    - Reasoning: if there is a retransmission due to timeout, then
      there is significant loss in the network, and senders should
      back *way* off.

9. Reflection
  - TCP has been a massive success, requires no changes to the
    Internet's infrastructure, is something endpoints can opt-in to,
    allows the network to be shared among tons of different users, all
    with different -- and changing -- types of traffic, in a
    distributed manner.
  - BUT: TCP doesn't react to congestion until it's already
    happening.  Is there something better we could do?


