
6.02 - Network: Reliable Transport and Congestion Control
Lecture #11
Katrina LaCurts, lacurts@mit.edu

0. Introduction
 - Last week: how to route scalably in the face of policy and economy
 - This week: how to transport scalably in the face of diverse
 application demands

1. TCP
 - Goals: provide reliable transport, prevent congestion
 - Broader questions: how do we do this scalably, and how do we share
 the network efficiently and fairly?
 - Today: TCP Congestion Control
 - In particular, a version of TCP known as "New Reno"
 - Next lecture: An alternative approach to "resource management" on
 the Internet

2. Reliable Transport via sliding-window protocol
 - Goal: receiving application gets a complete, in-order bytestream
 from the sender. One copy of every packet, in order.
 - Why do we need it? Network is unreliable. Packets get dropped,
 can arrive out-of-order.
 - Basics:
 - Every data packet gets a sequence number (1, 2, 3, ...)
 - Sender has W outstanding packets at any given time. W = window
 size
 - When receive gets a packet, it sends an ACK back. ACKs are
 cumulative: An ACK for X indicates "I have received all packets
 up to and including X."
 - If sender doesn't receive an ACK indicating that packet X has
 been received, after some amount of time it will "timeout" and
 retransmit X.
 - Maybe X was lost, its ACK was lost, or its ACK is delayed
 - The timeout = proportional to (but a bit larger than) the RTT
 of the path between sender and receiver
 - At receiver: keep buffer to avoid delivering out-of-order
 packets, keep track of last-packet-delivered to avoid delivering
 duplicates.

3. Main motivation
 - What's the "right" value for W?
 - In particular, what if there are multiple senders?
 - Ex:

 S1 -- 2 Mb/s -- A ---- 2 Mb/s ---- B -- 2 Mb/s -- D1
 | |
 S2 -- 2 Mb/s --- -- 2 Mb/s -- D2

 - What should happen? Debatable. Reasonable alternative:

 S1 -- 1 Mb/s -- A ---- 2 Mb/s ---- B -- 1 Mb/s -- D1
 | |
 S2 -- 1 Mb/s --- -- 1 Mb/s -- D2

 - How do S1 and S2 figure this out? What happens if S3 arrives?
 Or if S1 starts sending less? Etc.

5. Congestion Control: controlling the source rate to achieve high
 performance
 - Goals: Efficiency and fairness
 - Minimize drops, minimize delay, maximize utilization
 - Share bandwidth fairly among all connections that are using it
 - FOR NOW: assume all senders have infinite offered load. Fairness
 = splitting bandwidth equally amongst them.
 - But no senders knows how many other senders there are, and that
 number can change over time.
 - We'll use window-based congestion control. Switches are dumb
 (can only drop packets); senders are smart

6. AIMD
 - Need a signal for congestion in the network, so senders can react
 to it.
 - Our signal: packet drops
 - Every RTT:
 - If there is no loss, W = W+1
 - If there is loss, W = W/2
 - This is "Additive Increase Multiplicative Decrease" (AIMD)
 - Senders constantly readjust => adapt to a changing number of
 senders, or changing offered loads
 - Window size exhibits sawtooth behavior (see slides)
 - Why AIMD?
 - It's "safe": senders are conservative about increasing, but
 scale back dramatically in the face of congestion
 - Efficient and fair

7. Finite Offered Load
 - Remove the assumption that everyone has infinite offered load
 - Suppose S1 and S2 have offered load of 1Mb/s, S3 has offered load
 of .5Mb/s, and they all share a bottleneck with capacity 2Mb/s
 - What happens?
 - In theory: S3 stops increase once it's sending .5Mb/s. S1 and
 S2 continue increasing until they reach .75Mb/s
 - Is this fair?
 - In some sense. It achieves a type of fairness known as "max-min
 fairness". But there are other definitions (e.g., "proportional
 fairness")
 - What happens in practice?
 - We might get max-min fairness, or one of the senders might
 experience a much longer RTT and so not increase its window at

 the same rate.
 - So: TCP's congestion control utilizes the network reasonably well,
 but it's hard to measure fairness, or claim that fairness is
 achieved under skewed workloads, varying RTTs, etc.

8. Additional Mechanisms
 - Slow Start
 - At the beginning of the connection, exponential increase the
 window (double it every RTT until you see loss)
 - Decreases the time it takes for the initial window to "ramp up"
 - (See slide for diagram)
 - Fast Retransmit/Fast Recovery
 - When a sender receives an ACK with sequence number X, and then
 three duplicates of that packet, it immediately retransmits
 packet X+1 (remember: ACKs are cumulative)
 Ex: Send 1 2 3 4 5 6
 Receive 1 2 2 2 2
 Sender receives 4 ACKs total with sequence number "2";
 infers that packet 3 is lost, immediately retransmits
 - On fast-retransmit, window decrease is as before: W = W/2
 - In fact, when a packet is lost due to timeout, TCP behaves
 differently: W = 1, then do slow-start until the last good
 window, and then start additive increase.
 - (See slide for diagram)
 - Reasoning: if there is a retransmission due to timeout, then
 there is significant loss in the network, and senders should
 back *way* off.

9. Reflection
 - TCP has been a massive success, requires no changes to the
 Internet's infrastructure, is something endpoints can opt-in to,
 allows the network to be shared among tons of different users, all
 with different -- and changing -- types of traffic, in a
 distributed manner.
 - BUT: TCP doesn't react to congestion until it's already
 happening. Is there something better we could do?

