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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Global comments 1

Global comments

This section is too short. I’d like to see 6.3.1 and 6.3.2 both expanded with some more
explanation. I’m not lost, but just unfulfilled.

http://nb.csail.mit.edu/?comment=30059&org=pdf
http://nb.csail.mit.edu/?comment=30059&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 2

Comments on page 1

For Sunday’s memo, read this introduction to easy cases and drag (for high and low
Reynolds number).

is there a reason we talk about drag so much? I feel like it comes up in every unit

what easy case that you refer to?

I believe he is referring to easy cases in general.
I also don’t think there are separate categories within easy cases, so as was mentioned
before, it’s just easy cases in general for solving complex problems. Whenever we are
using an easy, correct solution to suffice for all problems of considerable complexity, there
will usually be a loss of some accuracy. That’s what easy cases refers to.
Easy cases is one approach to solving difficult problems wherein you consider a simpler
scenario and use the technique there to extrapolate how to approach the complex one.
A basic example is considering something in 2D, and then adding another dimension to
deal with a similar problem in 3D. Unfortunately, using a basic solution in a simpler case,
you will sacrifice accuracy in your approach.

maybe say, "meaning, it throws..."

http://nb.csail.mit.edu/?comment=29640&org=pdf
http://nb.csail.mit.edu/?comment=29640&org=pdf
http://nb.csail.mit.edu/?comment=29797&org=pdf
http://nb.csail.mit.edu/?comment=29752&org=pdf
http://nb.csail.mit.edu/?comment=29835&org=pdf
http://nb.csail.mit.edu/?comment=29911&org=pdf
http://nb.csail.mit.edu/?comment=29911&org=pdf
http://nb.csail.mit.edu/?comment=29911&org=pdf
http://nb.csail.mit.edu/?comment=29911&org=pdf
http://nb.csail.mit.edu/?comment=30038&org=pdf
http://nb.csail.mit.edu/?comment=30038&org=pdf
http://nb.csail.mit.edu/?comment=30038&org=pdf
http://nb.csail.mit.edu/?comment=30038&org=pdf
http://nb.csail.mit.edu/?comment=30038&org=pdf
http://nb.csail.mit.edu/?comment=29925&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 3

Aren’t all the estimation methods we have learned somewhat lossy? How is the easy cases
method so different?

nope! some cases are "lossless." for example, symmetry, like how Gauss solved the ad-
dition from 1 to 100 problem. the answer he got was EXACTLY correct and didn’t loose
any info at all :)

I think he means we intentionally discard something with this method. We know
that we are throwing something away when we choose some sort of an extreme
case. When we use methods we don’t explicitly lose information, there is just some
"guessing" involved.

I agree with 7:36...was there an explanation of this concept at the start of the book?
either way, it might be useful to restate with you mean by "lossy method" at the
start of this chapter.

Is there a better word than lossy here? I mean, I do understand it, but I winced
a bit reading it. Is a method with loss, is a dropping method; I’m sure, but
lossy feels weird.

lossy is a good way to describe this, although it might be good to explain it at some point
to those who do not know what it means

I don’t know what lossy means...
I think it means we disregard a lot of information to simplify the problem and we overlook
some of the actual parts of it, just piecing it together with our own estimation

I interpreted it as unreliable. like the above said we are making many estimates along
the way so things are really not that accirate.

what was the information it threw away?

http://nb.csail.mit.edu/?comment=29811&org=pdf
http://nb.csail.mit.edu/?comment=29811&org=pdf
http://nb.csail.mit.edu/?comment=29868&org=pdf
http://nb.csail.mit.edu/?comment=29868&org=pdf
http://nb.csail.mit.edu/?comment=29868&org=pdf
http://nb.csail.mit.edu/?comment=29910&org=pdf
http://nb.csail.mit.edu/?comment=29910&org=pdf
http://nb.csail.mit.edu/?comment=29910&org=pdf
http://nb.csail.mit.edu/?comment=29910&org=pdf
http://nb.csail.mit.edu/?comment=30001&org=pdf
http://nb.csail.mit.edu/?comment=30001&org=pdf
http://nb.csail.mit.edu/?comment=30001&org=pdf
http://nb.csail.mit.edu/?comment=30018&org=pdf
http://nb.csail.mit.edu/?comment=30018&org=pdf
http://nb.csail.mit.edu/?comment=30018&org=pdf
http://nb.csail.mit.edu/?comment=30041&org=pdf
http://nb.csail.mit.edu/?comment=30041&org=pdf
http://nb.csail.mit.edu/?comment=30003&org=pdf
http://nb.csail.mit.edu/?comment=30032&org=pdf
http://nb.csail.mit.edu/?comment=30032&org=pdf
http://nb.csail.mit.edu/?comment=31637&org=pdf
http://nb.csail.mit.edu/?comment=31637&org=pdf
http://nb.csail.mit.edu/?comment=29798&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 4

It might have been nice to mention this in the above examples - some people were confused
before as to where the information was "lost".

I agree with this. Even though we mentioned we were moving onto "lossy" methods in
class I don’t think it was mentioned in the previous sections

Yup. This came up in class as well, and I also agree that it’s a good point. The
previous examples were lossless!

I think we were suppose to infer from the introduction for the previous section
that we were moving into lossy territory.

Right, but it still seems strange to label something as such when it isn’t. It’s
also confusing because there are so many labels of different techniques when
methodologies can be similar.

I get what you are saying here, but the wording of this paragraph is kind of awkward.

I am not quite sure of the relationship between easy cases to approximation? Do we
eventually build off the easy cases to solve more complex cases? or am I confused by the
language?

"easy cases" is the title of this particular approximation method. Although, I feel like
there has to be a better title for it...it seems to confuse a lot of people.

So much drag... why is this class considered course 6 at all?

Course 2 kids said the same thing when we were doing UNIX.
it’s about the methods and I personally like using the same example as it helps me
think about the problem when I know the answer as it helps me learn the method.

I agree, it’s helpful to use the same problem as an example for 2 main reasons, 1:
It shows that one problem can be solved in many different ways, and just because
you don’t remember the exact way to solve it, you can still apply a variety of
methods to arrive at the same answer, and 2) we can check our answer from the
new method by checking it with the answer from an old method

i agree it’s useful but i’m also tired of reading about drag and i did take 2.006

At least we end up learning about a tough topic in a much easier manner

Yeah I like the fact that we’re tackling the same problems using different methods.

http://nb.csail.mit.edu/?comment=29641&org=pdf
http://nb.csail.mit.edu/?comment=29641&org=pdf
http://nb.csail.mit.edu/?comment=29663&org=pdf
http://nb.csail.mit.edu/?comment=29663&org=pdf
http://nb.csail.mit.edu/?comment=29738&org=pdf
http://nb.csail.mit.edu/?comment=29738&org=pdf
http://nb.csail.mit.edu/?comment=29844&org=pdf
http://nb.csail.mit.edu/?comment=29844&org=pdf
http://nb.csail.mit.edu/?comment=30094&org=pdf
http://nb.csail.mit.edu/?comment=30094&org=pdf
http://nb.csail.mit.edu/?comment=30094&org=pdf
http://nb.csail.mit.edu/?comment=30377&org=pdf
http://nb.csail.mit.edu/?comment=29985&org=pdf
http://nb.csail.mit.edu/?comment=29985&org=pdf
http://nb.csail.mit.edu/?comment=29985&org=pdf
http://nb.csail.mit.edu/?comment=30010&org=pdf
http://nb.csail.mit.edu/?comment=30010&org=pdf
http://nb.csail.mit.edu/?comment=29810&org=pdf
http://nb.csail.mit.edu/?comment=29822&org=pdf
http://nb.csail.mit.edu/?comment=29878&org=pdf
http://nb.csail.mit.edu/?comment=29878&org=pdf
http://nb.csail.mit.edu/?comment=29927&org=pdf
http://nb.csail.mit.edu/?comment=29927&org=pdf
http://nb.csail.mit.edu/?comment=29927&org=pdf
http://nb.csail.mit.edu/?comment=29927&org=pdf
http://nb.csail.mit.edu/?comment=29927&org=pdf
http://nb.csail.mit.edu/?comment=29989&org=pdf
http://nb.csail.mit.edu/?comment=30033&org=pdf
http://nb.csail.mit.edu/?comment=30067&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 5

I know this has been brought up before, but a short explanation of what the Reynolds
number is (instead of your reader having to go to wikipedia) would go a long way.

We also went over this in class, which was very helpful. Again it might be nice to see
this in writing

To prevent another student from having to go to wikipedia: its the ratio of inertial to
viscous forces in a flowing fluid. It is used to distinguish between laminar (low Re,
smoother flow) and turbulent flow (higher Re, characterized by more randomness,
eddies, vortices, and other instabilities)

Thank you!
I think it would be helpful if you provided the equation of the Reynolds number here.
I had forgotten the exact form of the equation we derived earlier by the time I read this
memo.

since it’s already been taught, i don’t think it needs to be restated here. we could
easily flip back and read about it again. save trees!

Oh I see, thank you for the post.

Why can’t dim. analysis solve this?
Because it can never find those factors like "1/3" that we saw in the last section. it only
deals with the groups of variables.

I think easy cases get us more accurate answers than dimensional analysis as it brings
in the factors we had originally ignored (like the factor of 1/3 mentioned above).
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http://nb.csail.mit.edu/?comment=30182&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

128 128

128 128

120

2010-04-03 03:50:51 / rev b783446376e3+

6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 6

I believe that, in class, we were actually able to use dimensional analysis to establish
(at least the basic form of) the function, f, as the relationship between the volume of a
pyramid and its height/base.

Is the, perhaps obvious, reason dimensional analysis doesn’t work here because the drag
coefficient and Reynolds number are, by definition, dimensionless?

If that is the case, then should we consider the methods to come a sort of "Plan B", in
general, for when dimensional analysis fails?

Dimensional analysis never finds f for you. even for the pyramid, dimensional analysis
only gave us V/hbˆ2=f(b/h), and then we had to use separate geometric reasoning to
find f=1/3. Dimensional analysis always deals with dimensionless quantities.

Here, Drag coefficient and Reynolds numbers are particular combinations of other vari-
ables that yield a net dimensionless products. (Re = density * velocity * diameter /
viscosity, for example).

Dimensionless analysis has not failed, it’s just harder in this case to determine the function
f. We used the physical experiment of dropping the cones to find two data points and
we interpolated in a previous reading, but we can’t extrapolate just from these points
because of the (not particularly nice) behavior of f.

That was a really good explanation.

I think people are right about having a brief reminder of what Reynolds number is because
I am slightly confused reading this paragraph

This was the only method used when I learned dimensional analysis before, but it’s
obviously somewhat limited in that you need to be able to measure a couple examples
before you can find the trend.

Is there a particular reason why the data was limited when using cones? What would be
a ideal situation for testing this?
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http://nb.csail.mit.edu/?comment=29670&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29698&org=pdf
http://nb.csail.mit.edu/?comment=29739&org=pdf
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http://nb.csail.mit.edu/?comment=29823&org=pdf
http://nb.csail.mit.edu/?comment=29823&org=pdf
http://nb.csail.mit.edu/?comment=29823&org=pdf
http://nb.csail.mit.edu/?comment=29977&org=pdf
http://nb.csail.mit.edu/?comment=29977&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 7

I don’t remember this result from the cone dropping...I only remember getting a good
estimate of their velocity ratio

Oh, I get what you mean. Perhaps explain more clearly that air is a Reynolds number
generally between 2k and 4k?

Maybe this can be found from the cone example, but we just didn’t explicitly go
through this part in class?

It’d be nice to see an annotation of the previous section that this was solved in for easy
reference (i.e.: (1.2))

obviously cannot be proven using experiments, so we’ll look at end cases for very small
and very large cones?

Isn’t this the idea of easy cases, we are looking at the two ends to see how it will respond
in extreme situations.

I would expect that the surface area of the cones becomes more important for high
Reynolds number.

I think it might be useful to just reiterate and explain what a low or high Re actually
means

and also maybe an example of the extreme cases of the Reynolds number
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http://nb.csail.mit.edu/?comment=30049&org=pdf
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http://nb.csail.mit.edu/?comment=29740&org=pdf
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 8

Because they describe the limits?
I think so. Measuring when Re is in the range 2000-4000 doesn’t seem to provide any
intuition about the behavior of the function f in either extreme.
Well, if you do the experiments, you’re adding data points and more data points will
always give you a more accurate map of f. However, easy cases look at the extremes
which should give a pretty decent map of f, but may be prone to error since it gives
trends.

I think that he means that a map of f could be created by using a large range of
Reynolds numbers, ’such experiments’ referring not to only the extreme cases, but to
experiments like the cone examples, but over a range of different Re’s.
Also, how do you know what range is a limited range? How do you know that 2000
is not the minimum and 4000 is not the maximum limit. How do we know that the
range goes from 0.1 to 10ˆ6 and not from .00001 to 10ˆ12?

You don’t. You keep on doing experiments until you see little change, indicating
that you’re still in the same regime.

I would think that a high Reynolds number experiment on a paper cone would be nearly
impossible

True, although you might be able to do it by dropping in an incredibly inviscid fluid
instead of air.
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 9

Not especially, but I get what you’re trying to say.
Depends on to which experiments are actually being referred. Conducting experiments
where the Reynolds number is 10ˆ6 would be rather difficult for the common student/reader.

Yeah, with a very high reyolds number, the paper cone experiment would be tough.

I dont understand why.
Because Reynolds number is pvL/u. So to achieve large Reynolds numbers, you
will need extremely large density, velocity, or length (or even some large com-
bination of the three!) parameters. The magnitudes of which are so large, most
people would be unable to actually develop an experiment that would allow them
to test it.

Probably at least more difficult than estimation...
Maybe just saying they are often not feasible given the average person’s available
materials - whereas anyone can take out a pen and paper and do the math.

That’s a good thing to point out: the extra data points may give you more accuracy, but
not necessary more accurate reasoning.

I thought we already knew the Reynolds number and it’s implications. It seems to me
that it would explain quite a lot.

It will be very helpful to have a diagram of a cone in this portion. It would definitely
allow me to conceptualize everything better.

Wow, this reminds me of those recursive problems earlier in the book. (in particular the
one with the "game")

Could you elaborate on why this reminds you of the recursive problem? I don’t see the
connection. Also, what section is the "game" problem you mentioned?
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 10

I know this was said earlier in another comment, but a general explanation of the Reynold
number would be nice. Not only do I not know anything about the Reynolds number,
but the following discussion about the meanings of different Reynolds numbers is lost
on me.

A lot of what is needed to know about the Reynold’s number was explained in earlier
sections. It would be redundant to mention it again.

I think the issue is that the readings are spread out over the course of a semester,
whereas if it was an actual paper book it would be easy to flip back to the section
where it was defined.

Square or cube??
Good point, the readings about the pyramid first talks about the square base of the
pyramid and then it goes into combining the 6 into a cube, whatever case is being referred
to should be specified.

Does it really matter? We get the point–it’s symmetric.
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 11

For the pyramids, it was quite intuitive as to what would constitute the "easy case". Here
though, I can’t say that it would occur to me to claim that Re &gt;&gt; 1 is an easy case.
What is the reasoning process here?

He does say that "The physical reasoning in this regime is the subject of Section 6.3.1,"
so maybe you’ll find your answer there.

I think "easy" refers to things like making things extreme or equal to some know
quantity or solution (like in the atwood machine where we made one mass huge and
then when we made the two masses equal). In this case, the "easy" part comes from
taking"extreme" cases

I think people are reading a bit too far into the use of ’1’. Re&gt;&gt;1 and
Re&lt;&lt;1 simply mean that Re is relatively huge and relatively small, respec-
tively.

What’s important is that for our Re&gt;&gt;1 case, viscosity is negligible, and for
Re&lt;&lt;1, viscosity dominates.

In general, "huge" for Reynolds numbers can be much larger than thousands or
tens of thousands or more, depending on the geometry.

"Small" can mean anything frommuch less than 1, to "few", to less than a thousand,
etc.

I guess someone who’s taken thermo would find this fairly obvious, because the cases
you’re generally looking at are Re &gt;&gt; 1 and Re &lt;&lt; 1 (and for Re 1 things get
tricky).

is this doing the same this as the last reading with the pulley? examine two cases and
extrapolate from there?
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 12

More explanation? I don’t understand why there are two cases
just a quick thought..Re could be confused as being the Real part of the Reynolds num-
ber...even though it’s not possible for it to be imaginary
The reynolds number is a ratio of inertia forces to viscous forces. Low reynolds numbers,
especially less than 1 are dominated by viscous forces, meaning that the inertia forces
(or density * velocity * characteristic length) are not important. I don’t know much about
these low Reynolds number scenarios, but I think these situations are for micro-organisms
and probably many other interesting motions. And so having two cases is important since
the motion is dominated by very different forces.

what would be the information lost in this case?
Eek, this is quite difficult to understand without first researching the Reynolds numbers.
Granted, this was explained in lecture in class, but as a textbook, for students / instructors
that may not have had the corresponding background lecture, this chapter would be
confusing. It would be a good idea to have an explanation, especially since this will be
compiled into a book.

I’m not sure where else this has come up, but I like that you actually reference the future
sections in the intro. It gives the reader a heads-up

Is this saying there is an almost infinite range of the Re?

so under what condition do you assume Re&lt;&lt;1?

Maybe I just don’t remember seeing this before, but it seems strange to reference these
sections when they’re about to be introduced to the reader for the first time.

I think that is a pretty standard text book technique "we will talk more about this in
section ... "

In my experience, turbulent flow means a Reynolds number &gt; about 2300. Why did
you choose to simplify it to &gt;&gt;1 and &lt;&lt;1?

I think 1 is more for the low Re limit, in which Re &lt;1. In the high Re limit, we’re not
thinking about laminar/turbulent transition yet, just about very very high Re and the
resulting relation between drag and viscosity in that situation.
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the

Comments on page 1 13

People’s comments about a definition of Reynolds number hold very true here, seeing at
least the equation would make this statement more clear to the reader.

At what point in terms of Reynolds number does the flow officially become classified as
turbulent?

And also, how do we know that it does?

Perhaps some intuitive explanation would help.
There’s a period of transition Reynolds numbers between 2300 and 4000, but it’s safe to
say anything higher is classified as turbulent flow. In any case, it can just be assumed to
be a high number over 10ˆ3.5.

2300 is the accepted transition between laminar and turbulent flow. Very few flows
are actually laminar, as it turns out.

Is there a background or reason for this cutoff?

DO we know this from experimental observation or from physical/theoretical law?

Is there a method to approximate this value as well or is there an actual value? In thermo,
I learned that the transition period is between 2300 and 4000 which seems like a huge
range?

I really like the description and pictures we had of this in class, it was nice to really see
how drag worked visually

I agree. I also think it would be beneficial to describe what turbulent flow actually looks
like and contrast that to uniform flow.

sad I missed that lecture :(
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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make the air thin like at high altitude
Can air be viscous? I thought this was more talking about fluids, so if v=0 then the object
is in air

Air is a fluid. It has a viscosity 2 orders of magnitude less than water.
just to further clearify, fluids are things that deform under shear forces, so both
liquids and gasses are fluids.

Or we could just all breathe in deeply at the same time...

this font similarity for v’s is getting a little too intense

not sure if it was mentioned previously but mu is also used to represent viscosity, that
might be a nice alternative.

since the Reynolds number is a function of many variables are you just choosing viscosity
to be the independent variable

An equation of the Reynolds-number formula would be nice here.
Yeah, I understand that viscosity is inversely porporitonal to the reynolds number, but I
have no idea where else the reynolds number comes from
Re = density * velocity * characteristic length / viscosity. It’s a ratio of inertial forces to
viscous forces.

It would be nice to see the equation so one can clearly see that viscosity disappears in the
limit of high Reynolds number

Agreed. I have no idea where the Reynolds number comes from, and actually being able
to see the equation and refer back to it in sections like this would be nice.

I would agree as well. For someone who hasn’t internalized/memorized the Reynolds
number equation, it would be nice to see the equation each time you bring it up.

I agree as well, it’s a little more tiresome flipping back through the previous
chapters.
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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isn’t viscosity the only term in the denominator of the Reynolds number? So if it went to
0, the Reynolds number would go to infinity. I’m not sure how it just "disappears".

It’s not the Reynolds number that disappears, it’s the viscosity that goes to 0 and thus
disappears, or in other words, if there is drag, it doesn’t depend on viscosity at that limit.
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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is there drag force without viscosity?

only in a world where everything is ideal. viscosity is basically another word for friction.
There is absolutely drag force without viscosity, since the object still has to deflect the
fluid in its way. The model Fd rho*vˆ2*A still applies.

We can apply this rule to objects in water too right? I believe they have viscosity
as well.
But wouldn’t it still approach zero as the the viscosity went to zero? I guess there
is still some force... like to change the momentum of the fluid since it still has
mass..?

I like the earlier comparison to friction...there is still drag on a frictionless
surface, if I remember correctly. We tend to assume there is no friction due to
air, but there is drag.

Remember that viscosity is a property of the fluid, not a property of the
object.

Friction’s ’purpose’ is to create the laminar boundary layer around the
object, ’enabling’ the fluid to exert a viscous drag force. (When actually
using Navier Stokes, etc., to model the flow you assume that the fluid
in contact with the object is not moving relative to the object. Someone
correct me if I’m wrong on this.)

But, regardless, there are inertial drag forces, as well, and that has to
do with the object having to displace an amount of fluid per unit time
proportional to v*A.

It is the relative importance of these two sources of drag force (inertial and
viscous) that the Reynolds number measures. Re (inertial force)/(viscous
force).

(To be a bit more technical:) Inertial force is F rho*vˆ2*Dˆ2. Viscous force
is F mu*v*D, where mu=rho*nu. Their ratio is (rho*vˆ2*Dˆ2)/(mu*v*D) =
rho*v*D/mu, which is the commonly presented expression for the reynolds
number.
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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6.3 Drag

Although the method of easy cases is a lossy method – it throws away
information – it gave us exact results in the preceding examples. Let’s
sharpen the easy-cases tool by applying it to that favorite difficult prob-
lem: drag. The conclusion of dimensional analysis was

drag coefficient = f(Reynolds number). (6.1)

The remaining problem, which dimensional analysis could not solve, is
to find the function f.

One approach to finding f is experimental. Drop cones of different sizes,
use the geometry and terminal velocity to compute the drag coefficient
and Reynolds number, and plot the results. We used this approach with
two cones, finding that the drag coefficient was the same at a Reynolds
number of 2000 and 4000. These two data points are only over a limited
range of Reynolds number. What happens in other cases, for example
when the Reynolds number is 0.1 or 106?

Such experiments would provide the most accurate map of f. However,
these experiments are difficult, and they do not help us understand why
f has the shape that it has. To that end, we use physical reasoning using
the method of easy cases. When we applied easy cases to the pyramid,
we chose h and b to make an easy pyramid (one that could be replicated
and combined into a square). For drag, we choose the Reynolds number
to simplify the physical reasoning. One choice is the regime of large
Reynolds numbers: Re � 1 (the two falling cones are examples). The
physical reasoning in this regime is the subject of Section 6.3.1. The other
easy case is the regime of low Reynolds numbers: Re� 1 (Section 6.3.2).

6.3.1 Turbulent limit

When the Reynolds number is high – for example, at very high speeds
– the flow becomes turbulent. The high-Reynolds-number limit can be
reached many ways. One way is to shrink the viscosity ν to 0, because ν
lives in the denominator of the Reynolds number. Therefore, in the limit
of high Reynolds number, viscosity disappears from the problem and
the drag force should not depend on viscosity. This reasoning contains
several subtle untruths, yet its conclusion is mostly correct. (Clarifying the
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what do you mean by "mostly" correct?

I think it’s on the same order of magnitude but i am not sure
I would love to see an example of how easy cases are actually lossy, since this is the
first type of approx. that is technically lossy.

I think that restating how the viscosity affects the Reynolds-number would be very helpful
here.

This is a strange to put this sentence.

what are these untruths?
This is a sentence that I hope is explained later on or in class, because it’s quite a
tease.

what did you throw out at unimportant? and what do you mean by "mostly correct"?
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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Comments on page 2

nice to see this mentioned. was worried that the generalizations made earlier in the
paragraph would have been left without mentioning that there is much more to it than
just high speeds leads to turbulent flow.

How did we arrive to f being constant?

yeah i’m a little confused here

What f and why is it constant? I agree that viscous forces are constant at zero, but I’m not
sure how you can say that drag force is constant, or at least I don’t see in what way it’s
constant.

Agreed, I don’t understand how this conclusion was reached. I understand what was
said in the previous paragraph, but I don’t understand how you can make the jump to
this.
I’m a bit confused too... You’re saying it’s constant with respect to the Reynold’s number,
but that is a function of velocity as well, isn’t it? Or are we assuming velocity is constant
also?

Well the previous paragraph talked about the drag force, so perhaps f is Fd?
I don’t think it’s directly saying that drag force is constant but rather that be-
cause viscosity drops out, f(Re) constant. Therefore using equation 6.1, the drag
coefficient = f(Re) = constant.

I think that if you say that the function "f" is constant it will be a lot less
confusing than just saying that f is constant. Saying f is constant makes it
sound like some variable in an equation while, here, we’re talking about the
equation/function itself.

On second thought, I’m not really sure I know what is meant by f is
constant. What does it mean for a function to be constant? I think under-
standing this could help me understand how we got to the conclusion that
f is constant.

We got to the idea that the viscosity is 0 because we wanted a way to get an
infinitely high Reynolds number. We then used this conclusion to eliminate
viscosity from the problem. This only works if you continue to assume that
the Reynolds number is infinite. So f(Re) essentially becomes f(infinity), which
I suppose only makes sense if it’s a constant function, not really dependent on
the Reynolds number. But the whole thing is extremely poorly worded.
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)

Comments on page 2 19

This seems like a pretty abrubt conclusion...
yeah I agree...is it possible to give some additional background on how this conclusion
was reached?
i think it sounds abrupt because it’s right after a very formal parenthetical. i think the
transition could be smoothened

I agree. I have no idea where this came from.

This kind of seems like it came out of nowhere. Maybe you should mention the equation
explicitly somewhere in one of these paragraphs so we can remember it from the last
reading?

It’s still really unclear to me how the drag force remains when the viscosity goes to zero...

what is the physical basis for the drag constant when there is no viscosity?
I think viscosity is basically how "thick" a fluid is. like how water is more viscous than
syrup (it’s more free-flowing). but even if something isn’t thick, when an object travels
through the fluid, it still comes into contact with the fluid, so there is still drag.

Why doesn’t 0 describe a vacuum state? It seems to me that the lowest you could
ever possibly get is no contact between an object an its medium of transport (i.e. a
vacuum). Instead, it seems that 0 describes a superfluid, which seems to be something
altogether different.

in 2.006, we denote crossectional area as Ac (A sub c) to remind us, might be helpful

How is cross section defined. I think the shape of a rocket has smaller Reynolds number
than the shape of a car at the same velocity, even if they have the section area. Am I right?
If this is true, why?

Well right below this it says the value depends on the shape of the object and how
streamlined it is.
I think the cross sectional area in this example is the area perpendicular to the direction
of motion.

this reasoning is super confusing

doesn’t this just always = one? or am I mixing up v’s?
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)

Comments on page 2 20

I’m a little lost. I know we had previous readings on this drag coefficient but how is the
c_d so small when you make the viscosity 0?

The c_d does not get smaller when viscosity gets smaller, it is solely dependent on the
shape of the object. It quantifies how "aerodynamic" a shape is.

what makes you say it’s "so small"?

How do we know what the force is without knowing the coefficient?
We are simply defining the drag coefficient. In order to find the value of the drag
coefficient, we will have to measure the force (or vice versa, to find the force, we will
have to know the drag coefficient).

I like this chart, but it may be helpful to mention at about what Reynolds number these
are taken at. ( What value constitutes a high Reynolds number)?

Yeah, I’d like some base values as well to judge these numbers from.
I like this table too. I’d like some more object examples to go with it, I find this very
interesting.

And by more examples, I mean lower numbers to go with the table below.
yeah this table was super helpful to help me visualize how different shapes/objects
are related to their drag coefficient and how the coefficients compare to each
other.

Very helpful to see these in a chart, for quick access.

Wow, we do know this is true, but cool that we could reason it out so easily.

yeah, it was really neat to see a previous concept so easily come across here

Is there any cd that is greater than that of a flat plate? And if so how high is the highest
cd?

I know we’ve showed this before but it still surprised me to see how it only depends on
shape. The table really helped to drive this home

Well, after what we’ve gone through in class, what else COULD it depend on? Mass and
weight don’t make very much sense, neither does density.
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)

Comments on page 2 21

Can we get a little more here? I’d like to see it done out, maybe as an exercise, but I was
a bit lost in this section (at least on first read).

It sounds like these examples are more common everyday (ions in seawater, bacteria
swimming- these things are basically happening all the time) but the high reynolds- num-
ber flows are definitely more common in experience... interesting

Yeah, it’s bit curious if you think about relatively which is more common. Though it’s
more a matter of scale: both of these cases happen a LOT.
No, when you actually talk about fluid flows, turbulent flow is far more common. I’m
not sure bacteria can be defined as a "fluid flow."

Would water droplets forming clouds fall into this category as well?

What are some other characteristics of Reynolds number?

What do you mean by this? We already know what Re describes.

Now I see the reason for the two cases is because different forces have more impact based
on size, so it really is two different problems.

fog droplet falling? this sounds odd...

yeah, what’s a droplet of "fog"?

never thought of that as related. cool

How is it related?

Could that be discussed briefly in class tomorrow?

Nevermind. I read the last paragraph.

Maybe add something here about how this will come up later?

are low Reynold’s numbers also characterized by shape? fog droplets and bacterium kind
of have the same shape...

I’m excited to read this section coming up!!
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)

Comments on page 2 22

Does the &lt;&lt; just mean much smaller?

Yes, usually by several orders of magnitude.

Yes.

I’ve lost sight of the lesson we are learning in this section. What is the easy-cases tool we
are sharpening?

I’m also a little confused on this. I think the easy-cases might be the extreme cases (where
Re &gt;&gt; 1 or Re &lt;&lt; 1) which we are trying to generalize to find f, but I’m not
sure.
The easy cases we’re looking at are the two limits. when Re is very large and when Re is
very small. Thus, we are "throwing away information" –everything in between. But we
know that in order for us to find a right answer, it must work for all cases. so we can
mess around with these two cases to find a solution that can be generalized

I would have liked to see this a little farther up, just as a reminder.
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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but not all the things in the table are round (although all the examples given are). How
does this work for non-circular objects?

Usually, if something isn’t round (at least for pipe flow), you use an approximation for the
diameter, called the "hydraulic diameter" (this is for standard Reynolds numbers based
on diameter, radius is half that, of course).

The hydraulic diameter is equal to 4*(cross-sectional area)/(wetted perimeter). The wetted
perimeter is the perimeter of the cross-section that is in contact with the fluid. You can
easily show that for a circle, the hydraulic diameter is equal to the actual diameter.

I’m not entirely sure if this applies outside of the pipe-flow scenario, but this is the general
idea.

To clarify, the hydraulic diameter still falls under the realm of Reynolds number based
on diameter. Because the Reynolds number is a dimensionless number which only
classifies a flow, you can substitute any length for diameter so long as you then define
that its the "Reynolds number based on [that length]." For example, Reynolds numbers
based on length (such as over a plate) go turbulent around 5*10ˆ5, as opposed to
Reynolds numbers based on diameter go turbulent around 2300.

The short story is that it’s all just a matter of defining your parameter so it’s clear
what the Reynolds number is saying.

Same issue as last time with it being difficult to distinguish v from nu. Heads up, everyone.
Could one of these variables be made bold or something to make them more distinguish-
able?

I agree. i had to double take

If the object is not spherical, how do we substitute this equation for this condition?

stupid grammar comment: for parallel structure, might just want to add a verb aka "reduce
the object’s speed"

Alternately, I see how "make" is also applied to "the object’s speed low," so just the last
part could be changed to "or the viscosity of the fluid high." for a parallel construction.

How high? Would ketchup work?

I like this clarification- it really makes sense
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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subtleties required two centuries of progress in mathematics, culminating
in singular perturbations and the theory of boundary layers [6, 30].)

In other words, f is constant! The consequence is

Fd ∼ ρv2A, (6.2)

where A is the cross-sectional area of the object.

Object cd
Car 0.4

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Therefore, the drag coefficient

cd ≡
Fd
ρv2A

(6.3)

is a dimensionless constant. The value depends on the shape
of the object – on how streamlined it is. The table lists cd for
various shapes (at high Reynolds number).

6.3.2 Viscous limit

Low Reynolds-number flows, although not as frequent in everyday ex-
perience as high-Reynolds number flows, include a fog droplet falling in
air, a bacterium swimming in water [20], or ions conducting electricity in
seawater (Section 6.3.3). Our goal is to find the drag coefficient in such
cases when Re is small (Re� 1):

cd = f(Re) (for Re� 1). (6.4)

The Reynolds number (based on radius) is vr/ν, where v is the speed, r is
the object’s radius, and ν is the viscosity of the fluid. Therefore, to shrink
Re, make the object small, the object’s speed low, or use a fluid with high
viscosity. The means does not matter, as long as Re is small, for the drag
coefficient is determined not by any of the individual parameters r, v, or
ν but rather only by their combination Re. So, we’ll choose the means
that leads to easy physical reasoning, namely making the viscosity huge.
Imagine, for example, a tiny bead oozing through a jar of cold honey.

In this extremely viscous flow, the drag force comes directly from – sur-
prise! – viscous forces. The viscous force themselves are proportional to
the viscosity ν. In fact, the viscous force on an object is given by

Fviscous ∼ viscosity× velocity gradient× area, (6.5)
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really effective example

Interesting visual.
I agree. Its a good example of an easy/extreme case. I think the format of this section
(comparing extremely low and high Reynolds number) illustrates the point really well.

yep great example to help the reader visualize something with a huge viscosity!

It’s a very vivid visual and something we’ve all had experience with.

an explanation would be helpful for me
Look at the example given in the paragraph before about a tiny bead oozing through a
jar of cold honey, that should clarify what viscous forces are.

cute

interesting

Is there any way to quickly justify this, or do we just need to accept it for now?

You can always check the units.... if that works, it’s at least mildly justified.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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Comments on page 3

Isn’t this acceleration?

This is pretty intuitive, isn’t it?
It is, but it may not be obvious when reading. I think this is very important stated here.
Thanks for it!

how is it sufficient? and why didn’t we know this 2 pages ago?

It seems a lot of "easy cases" are linked to dimensional analysis in some way.

You probably have defined the variables before, but please define them again. A disad-
vantage of an e-book is that it is difficult to look things up.

I really like the tables that show variables’ meaning, just like in the last sections.
Perhaps a table at the beginning (or end) of every chapter with all of the variable defin-
itions used in that chapter would be helpful – that way we would only need to refer to
one particular page, rather than looking through the entire text. Things like the formula
for Re could also possibly be included (but not derived there), just so that it’s easier to
find for later reference.

what was fl? flat plate?

Or maybe a page of formulas that is added to each we learn something new.

Although I agree with this as he discussed in class I’m not sure how this could be easily
fixed, maybe make one bold? I don’t think it’s too big of a problem if you’ve been
following the previous steps though

Once again, the nu and the v look very similar, and it’s still quite confusing.
What if we used mu=nu*rho in place of nu, throughout? (dynamic instead of kinematic
viscosity?) The math works the same, the reynolds number is more familiar (at least to
course 2-ers, i think), and we avoid the tricky v-nu similarities.

I think this is a great idea.

Quick review of f(vr/viscosity). The f() does not change the units at all right? So then we
get F_d/prˆ2vˆ2 through dimensional analysis? Also, are we just supposed to know that
f(x)=1/x when the Re&lt;&lt;1?
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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I had to re-read this a few times understand what was being said. It was not apparent
what was going on

This might have been covered earlier, but why do we want to make Fd proportional to v?
Two paragraphs earlier, we found that for low Re flows, drag force is proportional to
viscosity.

Thanks, this helped me too!

This might be extremely nitpicky, but here you have two different ways of expressing
1/something. Shouldn’t you just pick a convention and stick with it?

Why is the function f given by this for low Re? Could someone please elaborate on this,
I’m a little confused.

why didn’t we look at Re&gt;&gt;1?

Yeah I was waiting for that case to be explain after R &lt;&lt;1

We did look at Re &gt;&gt;1; its the section before - the turbulent case.

Er, we did. Re&gt;&gt;1 is the turbulent case - the first one discussed.

I’m a little confused on how these constants are in the equation.
In the equation prior to the above paragraph, it gives Fd/(this expression) = f(vr/v).
Solving for Fd gives this expression in front.

I think you’ve lost a factor of r here.
It’s also interesting that nothing else about the material matters...it really is the fluid at
low Re

This equation does seem dense.

so did this get you any farther than where you started? I feel like were in the same place-
not completly knowing the relationship all we did was move some variables around
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.

Comments on page 3 27

Maybe I missed something but when did this missing constant come into play? Also it
would have been great for a last paragraph summarizing our methods of using easy cases.

We were originally solving for the dimensionless drag coefficient c_d, but it looks like we
found F_d instead..I guess I’m kind of confused as well.

Same here, I think a summarizing paragraph to wrap up this section is really needed.
It says dimensional analysis alone is insufficient which I agree with and understand
but wasn’t the point of easy cases to help us finish what dimensional analysis couldn’t,
or are you showing here that there are cases like with drag where you need compli-
cated equations to actually figure out the missing constants.

Yup, that would be useful. This isi a realtively short chapter so it’s won’t be
ridiculous to add to the end of it.
yeah, that sentence directly after the above epxplanations and equations kindof
confused me about the poin of easy cases.
I totally agree. I was really confused after reading this section, even after rereaing
for the 3rd time! What I think is going on is that we said (from dimensional
analysis) that Fd/rho_fl*rˆ2*Vˆ2) = function of Re. The missing coefficient should
represents that "function" of Re. And even after doing dimensional analysis, we
still can’t find it. So, my conclusion is that he’s concluding that this is a case when
an "easy case" isn’t so easy.

I’m confused by this. I thought we got the answer using dimensional analysis, but this is
now telling us that we didn’t?

Yeah this is also a little unclear to me.

The easy case turned into no longer easy at this point for me.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.

Comments on page 3 28

What are the other shapes, out of curiosity?

I’d guess the ones seen in the table above but I’m not sure

Except for the car...

yup
or the ones with defined/simple boundary conditions (haha basically the ones that we
would do in a fluid mechanic class, but in the real world, i guess a lot of conditions are
much harder to define so you guesstimate a lot)

Did he reason this mathematically or experimentally (or both)?
It seems like we jumped to this, our methods got us most of the way but I’m curious as
to how exactly he came up with this number
I would also be interested in knowing how he came up with this value, as a comparison
with the approximation methods we’ve used here.

Given he is a mathematician, I would say that he solved it by messy integrals of the
unpleasant kind...

I think we need more here too. I think this section needs to be expanded.

referring to the Navier-Stokes Eqt?

so "stoked"

is this releated to the stokes shift?

That’s cool, I like this example.
So do I, it’s cool to learn the progression of how different scientific methods and
discoveries came about.

Would we approximate the 6 pi?
I think dimensionless consants in general are almost impossible to approxmate. For
a sphere, you could’ve seen the pi coming, but that 6 is not as simple.

Agreed - the dimensions are a easier to come by.

I’m pumped to apply this to Navier-Stokes.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.

Comments on page 3 29

I’m interested to see how this is used for this application.
Conditions where Re &lt; 1 also lead to neat things like reversible flow, which is pretty
uncommon in fluid mechanics studies. You could put a drop of dye in some viscous
liquid, stir, then reverse your path and the dye would regain the original shape. I suppose
this also depends on the diffusion time constant being relatively long, which is captured
by another dimensionless parameter.

Again, I’m confused about what exactly is meant by "easy cases". I don’t really know
what methods were used to solve the problem here, and I certainly couldn’t try to use this
method to solve a problem myself.

The only easy case I caught was given right at the end for Re&lt;&lt;1, but I’m don’t really
even understand that one.
I agree, I don’t think I understand the basic concept of easy cases, or how it is applied
in this case. It just seems to be more dimensional analysis

I think a short "wrap up" paragraph at the end could go a long way in describing
how the method was used, etc., and just overall clarification.
At the beginning of the section, I think Sanjoy defined an "easy case" to be a problem
in which we have to sacrifice accuracy because the problem is so complex. However,
in some of the first "easy cases," no accuracy was sacrificed. In this one, his definition
holds. I guess I’m confused about this also, just in a different way.

Easy cases tend to be extremes. Like Re&lt;&lt;1 and Re&gt;&gt;1. Sometimes numbers
like 0 and infinity are easy cases.

I was expecting you to show a comparison between these 2 functions and the actual be-
havior observed (the graph displayed in the last section) so we could see just how close
our estimations got to the actual thing.

Yeah, I agree, I’d like to see a graph... I find I tend to lose some conceptual meaning to
things when I’m just staring at equations.

That plot comes next (as we saw in class).
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.
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where velocity gradient is the rate of change of velocity with distance
(so if the velocity does not vary, then there is no viscous force), and the
area is the surface area of the object. Because the drag is due directly to
viscous forces, the drag force is also proportional to viscosity:

Fd ∝ ν.

This constraint is sufficient to determine the form of the function f and
therefore to determine the drag force. Start with the result from dimen-
sional analysis:

Fd
ρflr2v2

= f
(vr
ν

)
.

The viscosity ν appears only in the Reynolds number, where it appears
in the denominator. To make Fd proportional to ν requires making the
drag coefficient proportional to Re−1. Equivalently, the function f, when
Re� 1, is given by f(x) ∼ 1/x. For the drag force itself, the consequence
is

Fd ∼ ρflr
2v2

ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanic must do a messy and difficult
calculation that is possible only for a few special shapes. For a sphere,
the British mathematician Stokes showed that the missing constant is 6π;
in other words,

Fd = 6πρflνvr.

This result is called Stokes drag. In the next section, we will use this
result to study electrical properties of seawater.

Comments on page 3 30

From this example, I don’t know if this section should be called easy cases. Aren’t they
just complex cases that can be solved experimentally?

I think it would be a lot easier to do empirical studies of the mid-range of Reynolds
numbers. Was it possible to solve the low or high Re case experimentally and easily?
We’ve taken the problem of drag, which is complex overall, and limited our study to just
the easy cases within it.

Overall, I thought this section was rather ironic: While it is based on easy cases, I found
these examples to be some of the more complicated ones we’ve seen thus far in the course.

But these easy cases are still much easier than solving for drag along the entire range of
Re using Navier-Stokes or constructing expermiental apparatus.
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