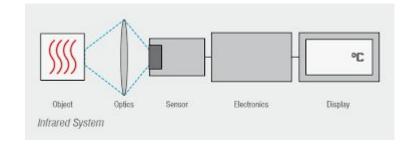
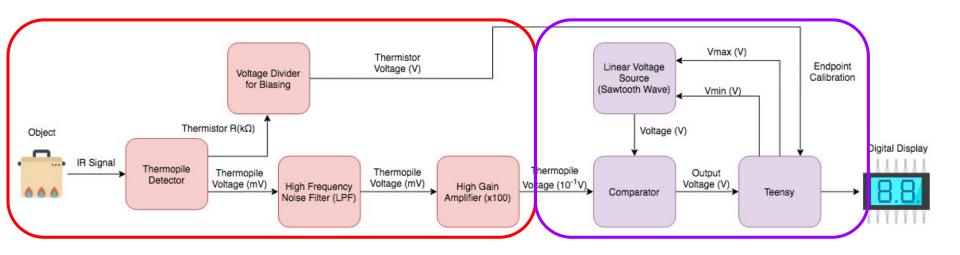


Traceable® Infrared
Thermometer Gun

Infrared Temperature Sensor


Kika Arias and Elaine Ng

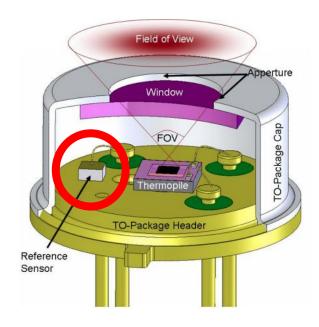

Extech IR270

How does IR thermometry work?

- All objects emit infrared radiation
- Thermal energy is emitted in the 6µm to 12µm range of the IR spectrum
- IR thermometers have:
 - a sensing element that takes incoming IR and converts it to an electrical signal
 - o a **signal conditioning** circuit processes that signal and converts it into a more usable form

Block Diagram

Sensing Element: the Thermopile


- A **thermopile** generates a voltage proportional to the temperature difference between its conductors
- Most sensor packages come with signal conditioning
- We opted for a minimalistic sensor

ZTP-148SR

Reference Sensor

- Thermopile voltage is a differential temperature measurement
- To isolate object's temperature, we need the reference temperature (temperature of the sensor package)
- For the ZTP-148SR, the reference sensor is a **thermistor**

<u>Cross section through thermopile sensor</u> <u>from "Thermopile Sensor for Contactless</u> <u>Temperature"</u>

The Thermistor

- A thermistor's resistance is dependent on the temperature of the sensor package
- Use Teensy to calculate reference temperature from thermistor resistance

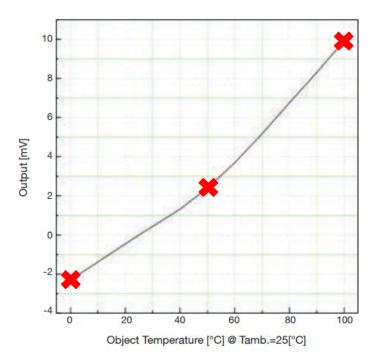
$$R = R_{25}e^{\beta(\frac{1}{T} - \frac{1}{T_{25}})}$$

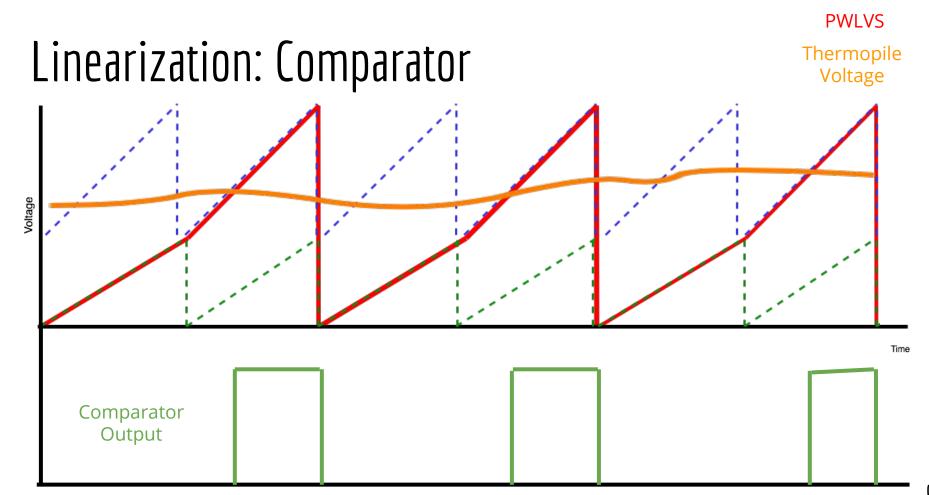
Tambient	Rmin	Rcent	Rmax
(kΩ)	(kΩ)	(kΩ)	(kΩ)
-20	893.8	942.3	992.6
-15	677.7	712.5	748.4
-10	518.2	543.3	569.2
-5	399.4	417.6	436.4
0	310.1	323.5	337.1
5	242.6	252.4	262.4
10	191.1	198.3	205.7
15	151.5	156.9	162.3
20	120.9	124.9	128.9
25	97.00	100.0	103.0
30	77.97	80.55	83.15
35	63.03	65.25	67.50
40	51.22	53.14	55.09
45	41.85	43.50	45.18
50	34.36	35.79	37.24
55	28.35	29.58	30.84
60	23.49	24.56	25.66
65	19.56	20.49	21.44
70	16.35	17.16	17.99
75	13.73	14.43	15.15
80	11.57	12.18	12.81
85	9.79	10.32	10.88
90	8.313	8.781	9.267
95	7.085	7.495	7.923
100	6.058	6.420	6.796
19/2/12/0	- CANCEL PACEURAL	2000 100 100 100 120	

Signal Conditioning

Problems with output thermopile voltage

- 1. It is **noisy**
- 2. It is **small** (on the order of millivolts)
- 3. It is a **nonlinear** function of temperature


Solutions


- 1. Low pass filter
- 2. High gain amplifier
- 3. Linearization circuit

Linearization: Piecewise Linear Voltage Source

- For limited ranges, thermopile voltage vs.
 object temperature is approximately linear
- Generate a piecewise linear voltage waveform based on the sawtooth circuit for temperatures [0°C, 50°C] and [50°C, 100°C]
- Use Teensy to calculate the voltages for the endpoints of the ranges

$$V_{endpoint} = A(T_{endpoint}^4 - T_{ref}^4)$$

Timeline

Week 1 (4/20): Thermopile and Reference Sensor, Filtering, Amplification simulation

Week 2 (4/27): Linear Voltage Source, Comparator, and Display simulation

Deadline 5/1: PCB Layout

Week 3 (5/4): Assembly and Testing (Breadboard)

Week 4 (5/11):