Lecture 2

Logic Synthesis

Primitive logic gates, universal gates Handouts
Truth tables and sum-of-products « lecture slides,
Logic simplification, Karnaugh Maps o LPset#2

General implementation techniques:
muxes and look-up tables (LUTSs)

Nexy4
Verilog basics

Reminder; Lab #1 due this Thu/Fri

6.111 Fall 2019

Lab Hours

Lab hours: eds.mit.edu/labs
Sun 1-11:45p, M-R 9-11:45p, F 9-5p

6.111 Fall 2019: Schedule of Lab Coverage (Administrative interface)

tme: | 12p | 1p | 2p |3p [4p | 5Sp | 6p | 7p |8 | 9p |10p | 1lp | 12a | 1a | 2a

Sat | Lab Closed

Sun Lab

Fall 2019 Closed Diana ‘ ‘ Mike ‘ Lab Closed

Sarah | | Lab Closed
| Diana |

Labiit Gim . |
Nexys4 DDR | Lydia |

August
Home g |

Announcements | Joe
= Mon

Handouts August Lydia | | Joe | | Lab Closed
»Lectures Tue Diana ‘ Sammy |

»Labs: 1,

Final Projects

»Memorable projects August | | Sarah | | Lab Closed
»Past projects - all Wed Joe I Gim . | Mark |

Schedul
B Daga | [de | | sa " Lab Closed
MIT cert required

*Qn-line Grades
*Submit PDFs Thu I

*Submit Verilog
*Staffed [.ab Hours

Course info Sarah Diana

Course objectives Fri Toe Lab closed

Course calendar

Late Policies

« Lab 1 check-offs (early) — sign-up on checkoff queue in lab — FIFO
during staffed lab hours. Note bench number...

» Please don’t assume that you can wait until the last minute!
* No check-offs Saturday
* Checkoff: Lab 1: Thu 5p, Fri 1pm.
« Lab grade = Checkoff + Verilog grade (when needed)
» Late labs:
» 1 point/day late penalty (no penalty for Saturday)
» Late completed labs will receive 1 point.

» 5 slack days available. This covers iliness, interviews,
overload, etc.

« A missing lab will result in a failing grade. We've learned that if you're
struggling with the labs, the final project won'’t go very well.

» Lpset — no late submissions. Solutions at times presented in lecture.

Lecture 2 6.111 Fall 2019

Checkoff Process

May checkoff at any time prior to checkoff date.

On checkoff date, checkoff will staff’s be main priority
Two checkoff dates: last name A-M (Thu), N-Z (Fri)
Thu checkoff starts at 5pm, Fri 1pm

Schedule time on google doc

download L5V

Check for conflicting dates

https://unical.csail.mit.edu/fa19

ook peners events 6111 , 6.036 6.003 6.UAT 6034 6002 6004 7012 805 18
6111 students who are alsa in the ather subject '] 3 7 5] 5 5 5 5
3 of 6.111 who are alsa in the other subject 13% 12% 10% 9% T% T% T% 7%
calendar last modified: 7 days ago 2 month ago 2 month ago amonthage amenthage 15dsysage 18daysago 15daysage 1
—_— ~

2 Sep0% Mon
Sep 10 Tue
Sep11 Wed hwi1 due ex01 due
Sep 12 Thu Lab1
Sepl13 Fn lab2 ps1 P
Sep 14 Sat
Sepl15 Sunm

3 Sepl16 Mon
Sep 17 Tue
Sep 18 Wed hwi2 due ex02 due P51 due P
Sep 19 Thu Lab 2
Sep 20 Fri Mo classes (Career Fair) psd
Sep 21 Sat
Sep22 Sun

4 Sep23 Mon quiz 10am
Sep24 Tue

Lecture 2 6.111 Fall 2019 5

Schematics & Wiring

 |C power supply connections generally not drawn.
All integrated circuits need power!

 Use standard color coded wires to avoid
confusion.

—red: positive
— black: ground or common reference point
— Other colors: signals

« Circuit flow, signal flow left to right

* Higher voltage on top, ground negative voltage on
bottom

* Neat wiring helps in debugging!

Lecture 2

Wire Gauge

* Wire gauge: diameter is inversely proportional
to the wire gauge number. Diameter increases
as the wire gauge decreases. 2, 1, 0, 00,
000(3/0) up to 7/0.

* Resistance
— 22 gauge .0254 in 16 ohm/1000 feet

—12 gauge .08 in 1.5 ohm/1000 feet
— High voltage AC used to reduce loss

* 1 cm cube of copper has a resistance of 1.68
micro ohm (resistance of copper wire scales
linearly : length/area)

Lecture 2

(700 nm wavelk

{
10pm @lOLM(197 = \
\ = t (4C waveken:
%
1[.]'" L ::rz"‘,
100 nm ‘ o
o .g. Core Duo 5
Wl ,
: '. TN -.g.CoreZ[yyulfdaie)
T 0) e.g. Core i3 (Clarkdale)
et g -
L 012) e.g. Core i7 (Ivy Bridge)
| 5 ' I W e j
| qeNE (2014) e.g. Core M (Broadwel)
Mol ol
10nm ! IRRRRNS il nm (201)
19 - = 2019 7nm Ryzen
e, Humen immuno-
au m A deficiency virus (HIV)

By Cmglee CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16991155

Lecture 2 6.111 Fall 2019

Timing Specifications

Propagation delay (tpp): An upper bound on the delay
from valid inputs to valid

outputs (aka “tpp yax)

Design goal:

minimize
VpUT propagation
delay
Vold! N
Vol S

Lecture 2 6.111 Fall 2019

Contamination Delay

an optional, additional timing spec

Contamination delay(t-p): A lower bound on the delay
from invalid inputs to invalid
outputs (aka “tpp pin)

VIN . .
1 i i Do we really need
Vig- 7 _______________________________ \ ____________________ t CD?
[e — [| — Usually not... it' Il be
' ' > important when we

design circuits with
registers (coming
soon!)

If top is not specified,
safe to assume it’ s 0.

v

The Combinational Contract
Design and Parts Quality

A Do B AB top propagation delay
(1) (1) t-.p contamination delay

A |

= ey
\ 9
é\@ Must be CD

Note: N Must be <tpp

1. No Promises during X
2. Default (conservative) spec: t.p =0

Functional Specifications

A/ B | ClY
O[O0 010
Output “1” if at 0 0 1 0
input A least 2 out of 3 of
> my inputs are a “1”. 0 1 0 0
input B ‘ Otherwise, output “0”. output Y 0 1 1 1
input C | will generate a valid
> output in no more than 1 0 0 0
2 minutes after
seeing valid inputs 1 0 1 1
111] 0] 1
1111111

3 binary inputs
so 23 = 8 rows in our truth table

An concise, unambiguous technique for giving the functional specification
of a combinational device is to use a truth table to specify the output
value for each possible combination of input values (N binary inputs -> 2N
possible combinations of input values).

Here's a Design Approach

1. Write out our functional spec as a truth table
2. Write down a Boolean expression with terms

A/B | ClY covering each ‘1’ in the output:
O, 0] 01O
O 0110
O/ 1,010 /? _ —
01111 Y=A-B-C+A-B-C+A-B-C+A-B-C
110 1)1 ﬁappreach creates equations of a particular
1111011 form called
111111 1
SUM-OF-PRODUCTS
Sum (+): ORs Verilog: |

'/'%E[\,rseev:/ajgone yet??? Products (¢): ANDs Verilog: &&
=

Lecture 2 6.111 Fall 2019 13

S-O-P Building Blocks

INVERTER: A— >o—z =R
\/\Bubble indicates
assign Z = 1A inversion
AND: AT N _A.B
B—t_/

assignZ=A&&B

OR: A }Z=A+B
B—

assign Z=A|| B

Lecture 2 6.111 Fall 2019

O -

__\oo>
- O O OfN

- ~ O Of>»
___\0N

Basic Boolean operators

» Bitwise operators perform bit-oriented operations on vectors
« ~(4’b0101) = {~0,~1,~0,~1} = 4'b1010
* 40101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001

» Logical operators return one-bit (true/false) results
. 1(4'b0101) = 1'b0

Bitwise Logical
~a NOT la NOT
a&b AND a&&b AND
alb OR allb OR
a’b XOR a== [in]lequality
al=b returns x when x
a~"b | XNOR or z in bits. Else
a™~b returns O or 1
a=== case
al== [in]equality
Note distinction between ~a and la returns O or 1
when operating on multi-bit values e aison

Straightforward Synthesis
Y=A-B-C+A-B-C+A-B-C+A-B-C

.
0——

We can use
SUM-OF-PRODUCTS

to implement any logic
function.

Nw> Nwmr>Pr Owrr OwP>
kﬁ f' \H U

Only need 3 gate types:
INVERTER, AND, OR

Propagation delay:
» 3 levels of logic

* No more than 3 gate delays assuming gates with an arbitrary number
of inputs. But, in general, we’ll only be able to use gates with a
bounded number of inputs (bound is ~4 for most logic families).

ANDs and ORs with > 2 inputs

A—T
B— J—z =A-B-C
C [
Chain: Propagation delay increases

A R A/ linearly with number of inputs
B - = |

,\/\ D—— z=A-B-C-D
C B |7
D

W-r%h, one should | use?

Z =A-B-C-D

O Tree: Propagation delay increases
logarithmically with number of inputs

Lecture 2 6.111 Fall 2019 17

SOP w/ 2-input gates

Previous example restricted to 2-input gates:

A——Dch—_\ . — — —
B /%j Y=A-B-C+A-B-C+A-B-C+A-B-C
|—_-
C
A _\-.%—\\
B —D’j\/\o—_/ —)
J |
C = —Lv’)_\%
A R o — ’|,>7Y
B A \/H ’|>j
C [\/o [
A 7\,%_\\
—
Using the timing specs given to the
left, what are to and tj for this
INV AND2 OR2 | combinational circuit?
tp | 8ps 15ps 18ps . .
to | 1ps o o Hint: to find overall t,; we need to

find max tpp considering all paths
from inputs to outputs.

More Building Blocks

NAND (not AND) A B2 NOR (not OR) A B|Z
0 01 0 01

A— 0 11 A 0 1]0
B —|) £=AB 4 o1 B_j:p_*:A+B 1 0|0
assignz=1A&&B) 1 1]0 assign Z = (A||B) 1 1]0

CMOS gates are naturally inverting so we want to use NANDs and NORs in
CMOS designs...

XOR is very useful when implementing
parity and arithmetic logic. Also used as a
“programmable inverter”: if A=0, Z=B; if
A=1, Z=~B

XOR (exclusive OR)

D—Z—A@B

assign Z= A"B

- A O O|X
- O -~ O
O ~ a ON

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

6.111 Fall 2019

Lecture 2 19

NAND — NOR Internals

Dual-In-Line Package

Vec B4 A4 Y4 B3 A3 Y3

HiH <
[e [
[e [

]
J

This device contains four independent gates each
of which performs the logic NAND function.

1

2 3 4 5 Gl? -

Al 1 Y1 A2 B2z Y2 GND

Lecture 2 6.111 Fall 2019

L
o+

HOE

20

Universal Building Blocks

NANDs and NORs are universal:

O » = o
D= D= 50>
D= D= DD

—{ |

:

Any logic function can be implemented using only NANDs (or,
equivalently, NORs). Note that chaining/treeing technique
doesn’t work directly for creating wide fan-in NAND or NOR
gates. But wide fan-in gates can be created with trees
involving both NANDs, NORs and inverters.

A

C

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of

De Morgan’s laws:

NAND form: A-B=A+B | | »—

NORform: A+B=A-B AT e

B——~ -

De Morgan-ized NAND symbol
A —5\ A)
} z
B—d
=D
A
B

/\ De Morgan-ized NOR symbol

So the following “SOP” circuits are all equivalent (note the use of
De Morgan-ized symbols to make the inversions less confusing):

— A———T
B L/) B / '
o D e D

AND/OR form NAND/NAND form

This will be handy in Lab 1 since
you’ll be able to use just 7400’s to
implement your circuit!

De Morgan-ized
Inverter

e e
> Ejj}c%z

c I~

NOR/NOR form

All these “extra” inverters may seem less
than ideal but often the buffering they
provide will reduce the capacitive load on
the inputs and increase the output drive.

Logic Simplification

« Can we implement the same function with fewer gates? Before trying
we’ll add a few more tricks in our bag.

- BOOLEAN ALGEBRA:

OR rules: a+l=1 a+0=a a+a=a

AND rules: a-l=a a-0=0 a-a=a

Commutative: a+b=b+a a-b=b-a

Associative: (a+b)+c=a+(b+c) (a-b)-c=a-(b-c)

Distributive: a-(b+c)=a-b+a-c a+b-c=(a+b)-(a+c)
Complements: a+a=1 a-a=0

Absorption: a+a-b=a a+a-b=a+b a-(a+b)=a a-(a+b)=a-b
De Morgan’s Law: 3.p=a+b a+b=a-b

Reduction: a-b+a-b=b (a+b)-(a+b)=b

!

Key to simplification: equations that match the pattern of the LHS (where “b”
might be any expression) tell us that when “b” is true, the value of “a” doesn’t

11 bh

matter. So “a” can be eliminated from the equation, getting rid of two 2-input
ANDs and one 2-input OR.

Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:
Y=A-B-C+A-B-C+A-B-C+A-B-C
Using the identity
cA+aA=q

For any expression A and variable A:

Y=A-B-C+A-B-C+A-B-C+A-B-C

W

Y=B-C+A-C+A-B

The tricky part: some terms participate in more than one reduction
so can’t do the algebraic steps one at a time!

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one
variable are adjacent to one another so we can see potential reductions
easily.

Here’s the layout of a 3-variable K-map filled in with
the values from our truth table:
Why did he
shade that
AB row Gray?
/

Yooo1111oi>
olo|lol| 1|0

1 0 1 1 1

____\oooo>
= A | OO0 O 01O

OO~ |O|~O|0O

Alalalo|la|lololo]lx

It's cyclic. The left edge is adjacent to the right edge.
It's really just a flattened out cube.

On to Hyperspace

Here's a 4-variable K-map:

AB
Z | 00|01 (11|10
00 | 1 0 0 1
01 | O 0 0 0
CD
11 1 1 0 1
10 | 1 1 0 1

Again it's cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

We run out of steam at 4 variables — K-maps are hard to draw and use
in three dimensions (5 or 6 variables) and we’re not equipped to use
higher dimensions (> 6 variables)!

Lecture 2 6.111 Fall 2019

26

Finding Subcubes

We can identify clusters of “irrelevent” variables by circling adjacent

subcubes of 1s. A subcube is just a lower dimensional cube.

AB

Y | 00 | 01 | 11

0| 0| 0|1

1
|

1| o |[[1 [n1]).

Three 2x1 subcubes

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4dx4, 4x2, 4x1, 2x2, 2x1, 1x1

CD

AB
Z | 00| 01|11 |10
00 | 1:] 0 | O |:1 |
01| 0|0]|O0]|O
1 |(1] 1) 0 |1
10 "l'ﬂ'!f 1)1 0 1

Three 2x2 subcubes

- Continue circling the largest remaining subcubes

(even if they overlap previous ones)

- Circle smaller and smaller subcubes until no 1s are left.

Lecture 2

Write Down Equations

Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

AB e

00 | 01 | 11/ 10 N
— <

0|0]| o0|'1] o0 Y=A-C+B-C+A-B

C S _
tlo ey 7 S
_ \'-..-"

We’'re donel

AB %
Z | 0001|1110)
00 [1]ofo Al)
oD (= ?ﬁ? -4 Z=B-D+B:C+A;C
|
10 (1] 1] o ;ij‘_‘/ ——————— 3

6.111 Fall 2019

28

Two-Level Boolean Minimization

Two-level Boolean minimization is used to find a sum-of-products
representation for a multiple-output Boolean function that is optimum
according to a given cost function. The typical cost functions used are
the number of product terms in a two-level realization, the number of
literals, or a combination of both. The two steps in two-level Boolean
minimization are:

*Generation of the set of prime product-terms for a given function.

*Selection of a minimum set of prime terms to implement the function.

We will briefly describe the Quine-McCluskey method which was the
first algorithmic method proposed for two-level minimization and which
follows the two steps outlined above. State-of-the-art logic minimization
algorithms are all based on the Quine-McCluskey method and also
follow the two steps above.

Prime Term Generation

Start by expressing your Boolean function using 0-terms
(product terms with no don’t care care entries). For

function F(w,x,y,z) shown to the right includes only entries
where the output of the function is 1 and we’ve labeled

each entry with it's decimal equivalent.

F
W
0
0
compactness the table for example 4-input, 1-output 0
1
1
1
1
1

1

= f(W,X,Y,Z)
Y Z label
00 0
01 5
11 7
00 8
01 9
10 10
11 11
10 14
11 15

PRPOOOOREROX

Look for pairs of O-terms that differ in only one bit position and merge them in
a 1-term (i.e., a term that has exactly one ‘" entry). Next 1-terms are
examined in pairs to see if the can be merged into 2-terms, etc. Mark k-terms
that get merged into (k+1) terms so we can discard them later.

, S
, [

1-terms:

, 9
,10

0
5
7,15
8
8
9

,11
Example due to 10.11

Srini Devadas 10.14

11,15
14,15

~000 [A]
01-1 [B]
~111 [C]
100-
10-0
10-1
101-
1-10
1-11
111-

2-terms: 8, 9,10,11 10--1[D]
10,11,14,15 1-1-[E]

3-terms: none!

Label unmerged terms:
these terms are prime!

Prime Term Table

An “X” in the prime term table in row R and column K signifies that the O-term
corresponding to row R is contained by the prime corresponding to column K.

ABCDE
Goal: select the minimum 0000 X —>Aisessential -000
set of primes (columns) 0101 . X . . . —>Bisessential 01-1
such that there is at least %éé " X X i
,One X In elvery rOW ThIS 1001 - X . —»D is essential 10--
is the classical minimum 1010 X X
covering problem. 1011 X X
1110 X —>Eisessential 1-1-
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding O-term is not contained in any other prime.

In this example the essential primes “cover” all the 0-terms.

F =f(W,X,Y,Z) = XYZ + WXZ + WX + WY

Logic that defies SOP simplification

Full Adder S
C, A B S C. c/aB oo o1 |11] 10
0 0 0| 0 O A B 0 JoJt]o
O O 1 1 O l l 1 1 0 1 0
O 1 0 1 0 Co
O 1 1 0O 1 Coe— FA [— C c/aB Joo[o1] 1110
1 0 O 1 O o |o[ol|[t]]o
1 0 1 0 1 l 1 o
1 1 O 0 1 S
1 1 1 1 1

S=A-B-C+A-B-C+A-B-C+A-B-C=A®B®C,
C,=A-C+B-C+A-B
The sum S doesn’t have a simple sum-of-products implementation

even though it can be implemented using only two 2-input XOR
gates.

Logic Synthesis Using MUXes

Truth Table
A C B A|Y
_ Y O 0 0joO
If Cis 1 then o o 11
copy Bto, o 1 olo
otherwise copy
C AtoY 0 1 11 A 4-input Mux
: g (1) g implemented as
: : a tree
2-input Multiplexer 1 1 ojft oI
1 1 11]
|1 1
_ /i_l v
IZ_O\
B . 11
c_F)oL_)DL Y <
A __}»r So S

schematic Gate
symbol

Systematic Implementation of
Combinational Logic

Consider implementation of some

arbitrary Boolean function, F(A,B) Full-Adder

... using a MULTIPLEXER Carry Out Logic
as the only circuit element:

Z?:
1—%’0_

0 1 —
1/1_
1_/

17 A.B,C

T
/

>
vy

out

\

—
\\lCDU‘I-bOOI\)A

OO~ O~ 10|0O

Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this
time let's use a 4-input mux

____\oooo>

AAOOAAoow

-~ O OO~ 010

Ala|lajlomn|lo|lo|o]|

|
}
}
|

——

/

7

Full-Adder
Carry Out Logic

0—

t
Ci ou

 —

oom—\o/

Lecture 2

Xilinx Virtex Il FPGA

Global Clock Mux— = ’ _ _ ,
e =
-~
g E
~
7~
e E
- E
\
Configurable Logic \ E
\ Ty : HEEE
\ /i | : A :
\ / H | & H H !
Programmable |/Os |

.-"' | ’
CLB Block SelectRAM Multiplier

Virtex-ll Architecture Overview

XC2Vv6000:

* 957 pins, 684 10Bs

« CLB array: 88 cols x 96/col = 8448 CLBs

« 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
« 18x18 multipliers = 6 cols x 24/col = 144 multipliers

6.111 Fall 2019 Figures from Xilinx Virtex |l datasheet

36

Virtex || CLB

> TBUF X0Y1
P> TBUF XoYo
=
e Register
Switch L
Matrix I
Slice A
1 vovi [* > . MUXFs
Fast ~ iy
Slice Connects SRL16 .
1 xovo [* "] to neighbors 7. |LuT~ cY Register
hY F Y
CIN
Virtex-ll CLB Element) Arithmetic Logic
Virtex-ll Slice Configuration
16 bits of RAM which can be configured as a 16x1
single- or dual-port RAM, a 16-bit shift register, or a
16-location lookup table Figures from Xilinx Virtex Il datasheet
Lecture 2 6.111 Fall 2019 37

Lecture 2

Virtex |l Slice Schematic

SHIFTIN couT
SOPIN > N oReY
o—l | — > SoPOUT
DE&%‘{SE“ 'j YBMUX — B
a4 MD =9 1 MUXCY \ _l)
= 0 1
68 > A3 BRam
G2 —> A2
6l > Ay CJROM 5 X |
WG4 > WG4 ' GYMUX Y
WG3 > WG3))), }
WG2 > WG2 | < DY
WG1 > wai ME1s XORG OrF
N ws DI CILATCH
ALTDIG > -
> G DYMUX D Ql—r—a
"—_DMULT\ND g?oo cedee ¥
. BY CYOG LK— CK
[5 SR REV
BY > . o)]
U
L
SLICEWE[2:0) WSG SHIFTOUT SR
— ﬁ[Q:O] > DIG
| MUXCY.
WSF 0 1
|
|
|
ce>—(] :
Shared bstween |
CLK D—[j] x & y Registers |) .]
SR D—d: ﬁ Figures from Xilinx Virtex |l datasheet
CIN

Virtex-Il Slice (Top Half)

6.111 Fall 2019 38

Virtex |l Sum-of-products

O T B |
15 3 I 3 ol o
2 N.W\W 2 =, ! rghE rshe _
O 0 g2 &) L glleg gl =) !
_ =Hr L Hv “ = Hi | _
| T A P!
_ = =1 1 = = _
I -1 - I) I

39

Figures from Xilinx Virtex Il datasheet
6.111 Fall 2019

Horizontal Cascade Chain

Lecture 2

The Need for HDLs

A specification is an engineering contract that lists all the goals for a
project:

» goals include area, power, throughput, latency, functionality, test
coverage, costs (NREs and piece costs), ... Helps you figure out
when you're done and how to make engineering tradeoffs. Later on,
goals help remind everyone (especially management) what was
agreed to at the outset!

* top-down design: partition the project into modules with well-defined
interfaces so that each module can be worked on by a separate team.
Gives the SW types a head start too! (Hardware/software codesign is
currently all the rage...)
« Example — a well defined Instruction Set Architecture (ISA)
can last for generations ...

The Need for HDLs (cont'd.)

A behavioral model serves as an executable functional
specification that documents the exact behavior of all the
individual modules and their interfaces. Since one can run tests,
this model can be refined and finally verified through simulation.

We need a way to talk about what hardware should do without
actually designing the hardware itself, i.e., we need to separate
behavior from implementation. We need a

Hardware Description Language

If we were then able to synthesize an implementation directly from
the behavioral model, we’d be in good shape!

Using an HDL description

So, we have an executable functional specification that
» documents exact behavior of all the modules and their

interfaces
e can be tested & refined until it does what we want

An HDL description is the first step in a mostly automated process
to build an implementation directly from the behavioral model

HDL , : : Gate CPLD
description Logic Synthesis [netlist—> Place & route [FPGA
Stdcell ASIC

» create floor plan blocks
* place cells in block

* route interconnect

* optimize (iterate!)

Functional design Physical design

* HDL— logic
» map to target library (LUTSs)
* optimize speed, area

A Tale of Two HDLs

VHDL

ADA-like verbose syntax, lots of
redundancy (which can be good!)

Extensible types and simulation
engine. Logic representations are
not built in and have evolved with
time (IEEE-1164).

Design is composed of entities
each of which can have multiple
architectures. A configuration
chooses what architecture is used
for a given instance of an entity.

Behavioral, dataflow and structural
modeling. Synthesizable subset...

Harder to learn and use, not
technology-specific, DoD mandate

Verilog

C-like concise syntax

Built-in types and logic
representations. Oddly, this led to
slightly incompatible simulators
from different vendors.

Design is composed of modules.

Behavioral, dataflow and structural
modeling. Synthesizable subset...

Easy to learn and use, fast
simulation, good for hardware
design

Lecture 2

Microphone

Ethernet

6.111 Fall 2019

12 bit VGA

PWM Audio Out

Analog Input or digital I/0

(4) 8 User I/0

5 Pushbuttoms

ADI
temperature
sensor

44

Nexys4 Schematic

" — | 2 | 5 | =
1c88 1C8D IC8E
BANK 15 BANK 34 BANK 35
’CBCS 1801 10.0_15 10_L1P_TO_ADOP_15 e%:—’%%m % 10034 10_L1P_TO_34| g""l—g%g-',}s[— %‘ 10_0_35 10_L1P_TO_ADA4P_35 Q%%gg
A 10_25_1510_L1N_T0_ADON_15 [l er 10225 34 10_LIN_T0 34|t —onme it 2ol 10253510 LIN_T0_ADAN 35 fltse—vez=ry
10_L2P_T0_ADBP_15 i 10_12P_T0_34{=rs—psa—rr 10_L2P_T0_AD12P_35 g+
BANK 14 10_L2N_T0_ADBN_15 ¥ers—rprResern 10_L2N_T0_34<te—p e~ 10_L2N_TO_AD12N_35 fi<trz—az=ry
(EDI7 6 Rii | iis: ce 10_L3P_T0_DQS_AD1P_15 liges—=r 10_L3P_T0_DQS_34 f<rgs—poo=r 10_L3P_T0_DOS_ADSP_35 Ve T
& R15™ 10.0_14 10_14P_T0_D04_14[fereprny 10_13N_T0_DOS_ADIN_15 fieress—rrrs 10_13N_T0_DOS_34| <ig=—pen—5rT 10_13N_T0_DOS_ADSN_35 flare—rarps
10_25_14 10_LAN_T0_DO5_14| tges—reroe—y 10_Lap_T0_15 ffaras—n—sarmy 10_L4P_T0_34| s —pre—re 10_Lap_T0_35 fr=— a0
10_L5P_T0_DO06_14| [*pT5—<w 10_LAN_T0_15 it s—ee 10 L4AN_T0_34 [i<re=—pro—r 10_14N_T0_35 fl<ts—
10_LSN_T0_D07_14| s 10_L5P_T0_AD9P_15 oo 10_L5P_TO_34 SraE 10_LSP_T0_ADT3P_35 flatie—rmme—r e
10_L6N_T0_DOB_VREF_14| [gme—perr 10_L5N_TO_ADON_15 T AUD-SD 10 LSN_T0_34| <ie—pon—cp 10_L5N_TO_AD13N_35 fi=ts—
10_L7P_T1_D09_14| (oere—snre 10_{6P_T0_15 R 10_L6P_T0_34| etre—preomcemr 10_L6P_T0_35 ftss—mrs
107L7N_T1_D10_14| (=755 10_L6N_TO_VREF_15 AP Al 10_L6N_TO_VREF_34 [{rge—pre—5mm 10_L6N_TO_VREF_35 f<tmr—ranm—y 1N
10_L8P_T1_D11_14| ki 10_L7P_T1_AD2P_15 o= — 10_17P_T1 34l —prm=ba1a 10_L7P T1_AD6P_35 e
— 10 L8N_T1_D12 14| te=—tors 10_L7N_T1_AD2N_15 fleerse—rss— "= 10_L7N_T1 34| <ra—F =501 10_L7N_T1_AD6N_35 fler— enns
10_L9P_T1_DQS_14|[<3igBTND — 10_18P_T1_AD10P_15 a2~ == 10_L8P_T1_34|<g=—pa-555 10_18P_T1_AD14P_35 f<ta=—y2nre
10_L9NT1_BQS_D13714 | e rer 10_18N"T1_AD10N_15 = —smoep—~=C 10_L8N_T1 734 s —ep=rmm . o 10 T8N T1_AD14N_35 fetr —mery
10_L10P_T1_D14_14| (o= 10_L9P_T1_DQS_AD3P_15 laza—m—— 10_L9P T1_DQS_34[kres—5oe=5oasn 10_L9P_T1_DQ5_AD7P_35 ftar—s5—op
10_L10N_T1_D15_14| [*{TeTEnie R 10_L9N_T1_DQS_AD3N_15 flasisro—mamp— = 10_L9N_T1_DQS_34 | <rre—pgrepate 10_L9N_T1_DQS_AD7N_35 fetee—remper
10_111P_T1_SRCC_14 %n 10_[10P_T1_AD11P_15 flczze—smm—r— 10_110P_T1_34<rem—pro—poas 10_L10P_T1_AD15P_35 f<tss—pea—nn
10_L11N_T1_SRCC_14 T 10_T10N_T1_AD11N_15 fartre—r=rer 10 L10N_T1_34 [10_L10N_T1_AD15N_35 llarpe—prr=reer
10_112P_T1_MRCC_14 7 Ve 10_L11P_T1_SRCC_15 frrere—es 10_L11P_T1 SRCC 4[5 i nass 10_L11P_T1_SRCC_35 fmr—poeron 0 r
10_L12N_T1_MRCC_14 e CE 10 L11N_T1_SRCC_15 g 10_L11N_T1_SRCC_34 [<e—pneps 10 L11N_T1_SRCC_35 fi<tes—crroni=—
10_L13P_T2_MRCC_14 = 10_112P_T1_MRCC_15 flcrer=—rm—er e 10_112P_T1_MRCC_34 | t<re—Fpe=pars 10_112P_T1_MRCC_35 M<tss—GanT s —
10_113N_T2_MRCC_14 q 10 112N_T1_MRCC_15 fieio—eae= 10 112N T1_MRCC_34 [farre—rro=—re 10 112N_T1_MRCC_35 feter s
i 10_L14P_T2_SRCC_14 10_L13P_T2_MRCC_15 oo 10_L13P_T2_MRCC_34 trse—prnars 10_L13P_T2_MRCC_35 fltm—=oe=—
10_L14N_T2_SRCC_14fr—rrre 10 L13N_T2_MRCC_15 frere—m—errr 10_L13N_T2_MRCC_34 | Kis—FnaAT 10_L13N_T2_MRCC_35 fl<ts—cp—ree
= - T 10_L14P_T2_SRCC_15 flerirm—po= 10_L14P_T2_SRCC_34| (%= FpR=BAT 10_L14P_T2_SRCC_35 flatp—sp=rr
10_L17P_T2_A14_D30_14| oigze—ure 10_L14N_T2_SRCC_15 e 10_L14N_T2_SRCC_34 [frs>—ro=rrr 10_L14N_T2_SRCC_35 fita>— =
10 L17N_T2_A13D29 14| 7 1Fp7 10_L15P_T3_DOS_15 Rt 1e017 6 10_L15P_T2_DQS_34| <55 D0RAT0 10_L15P_T2_DOS_35 f<tes—ne
10_L18P_T2_A12_D28_14| <575TEpe 10_L15N_T2_DQS_ADV_B_15 = 10 L15N_T2_DQS_34 | <r—roR—A0 — 10_L15N_T2_DQs_35 5 —555a70
10 118N _T2_A11_D27 14| 591 —F 10_L16P_T2_A28_15 fog7a7 10 116P_T2 34|t —pro=rre 10_116P_T2_35 Bgr—5~cvip
I0_L19P_T3_A10_D26_14| [10_L16N_T2_A27_15 flarzre—r 10_L16N_T2_34 trr—promess 10_L16N_T2_35 f<te— s
10_L19NT3_ADS_D25_VREF 14| (<fgr—2w= 10_L17P_T2_A26_15 flap=—ers— 10_117P_T2_34[f—pro— 10_117P_T2_35 fi<te—jo
10_L20P_T3_A08_D24_14| 575 Trpin 10_L17N_T2_A25_15 f<r=—T¢p0 10_L17N_T2_34 tt—prio=as 10_L17N_T2_35 {5 —55Bame
_ 10 120N_T3_A07_D23 14| for5—we 10_L18P_T2_A24_15 ot 10_118P_T2_34ffae? —oo=ros 10_118P_T2_35 flarer—p=psy
10_[21P_T3_D0S_14| (%717 {ep1e 10_L18N_T2_A2315 o —ans 10_L18N_T2 34 |isee—pon-hae 10_118N_T2_35 fsge—jer
10_L21N_T3_DQS_A06_D22_14 | 5017 TFp 10 10_L19P_T3_A22_15 f<ior=—55 10_L19P_T3_34|(ree—ppepas 10_L19P_T3_35 f<tir—55
10 122P_T3_A05_D21_14| (%7 1ep13 10_L19N_T3_AZ1_VREF_15 o2 —r—rs 10_L19N_T3_VREF 34 [<i=—pne—por 10_L19N_T3_VREF_35 fl<tr— o=
10_122N_T3_A04_D20_14 |ty o= 10_L20P_T3_A20_15 A= 10_120P_T3_34[fre—Fm=rar 10_120P_T3_35 ftads—pz
10_L23P_T3_A03_D19_14|[S55—anT 10 120N_T3_A19_15 [l 10_120N_T3 34 |=ie—poeoas p 10_120N_T3_35 flarem—
10_L23N_T3_A02_D18_14| 55—ANS 10_L21P_T3_DOS_15 fp7aTa—— 10_L21P_T3_DQS_34 [+5—pprTDas | 10_L21P_T3_DQS_35 f<Tor—p1—
10_L24P_T3_A01_D17_14| (o5ro—cp 10_L21N_T3_DQS_A18_15 flareee—as 10_121N_T3_DQS_34|<%>—por a5 — 10]121N_T3_DQS_35 k<tp—jp—
10_L24N_T3_A00_D16_14 | — 10122P_T3_A17_15 g e—aa —— 10_122P_T3_34<%e—hpmag 10_122P_T335 fiis—i5
10_L22N_T3_A16_15 b= 10 122N T3 34 f<meo—pro—rn 107122N_T3_35 ffetps—moe
XCTATO0T-1CSG324C 10_123P_T3_FOE_B_15 <re—anT 10_123P_T3_34[rrr IOM 10_123P_T3_35 li<trr—Ter
N 10_123N_T3_FWE_B_15 f<i=e—TroT 10_L23N_T3_34 | <ea—pre=prs 10_123N_T3_35 <t
c 10_124P_T3_RS1_15 flas=—emrs 10_124P_T3_34 ffre—e 10_124P_T3_35 flcime—resy
10_L24N_T3_RS0_15 10_L24N_T3_34 10_L24N_T3_35
IC8C
BANK 16 XC7A100T-1C5G324C XC7A100T-1C5G324C XC7AT00T-1CSG324C
D9 __ETH_CRSDV
10_L6N_T0_VREF_16ea—FTHTpe
10_L11P_T1_SRCC_16 <hes—rrr=rrer—
10_L11N_T1_SRCC_16 l<tee—Frm=iir
10_L12P_T1_MRCC_16 ETH_TXD1 xapcy p R200 100 XAL_P xApcz p R201 100 XA2_P xapc3 p R202 100 XA3_P
10_L12N_T1_MRCC_16 (<1 RXD0— AN AN W
10_L13P_T2_MRCC_16 [\<T&5—FTH RXERR 60 c61 c62
10_L13N_T2_MRCC_16 10 ETH TXDO 1nF No Load 1nE No Load 1nE No Load
10_L14P_T2_SRCC_16 N<T35—FTH MDIO XADC1_N . T XA1L_N XADC2_N T XA2_N XADC3_N o T XA3_N
10_L14N_T2_SRCC_16 <'570 ETH RXDT— AN A
I0_L19N_T3_VREF_16 = R203 100 R204 100 R205 100
XC7A100T-1C5G324C
1c9 Rev
veeava a 3 CLKI00MHZ xapca_p R206 100 XAd_P
s . “Nexys 4 DDR
1| =— 2 GND c63 _T_ y Copyright 2014
b) h sTBY GND ———— = No Load et
g(GJUHF DSC1033CC1-100.0000T XADC4_N AN 1_ XA4_N M#FPGABA.NKS
oD R207 100 500-292
Engineer EG
Author DL
Date /1072014 BEYOND THEORY
Sheet# 7 outof 11
Lectu a 7 - n

45

set _property -dict { PACKAGE PIN R12
[get _ports { led16 b }]; #10 L5P _TO D06 14 Sch=led16 b

Lecture 2

XDC to Hardware

Mapping

IC8A

LED17 G R11

CB

R1
¥

BANK 14

- L18 CG

10 0 14 10_LAP-—Fo-DO4—1%
|0_25_14"10_L4N_TO_DO5_14
TO D06 14

18 B

R12 LED16_B

|0_L5N_TO_DO7_14
|0_L6N_TO_DO8_VREF_14
|0_L7P_T1_D09_14
I0_L7N_T1_D10_14
|O_L8P_T1 D11 14
|0_L8N_T1_D12_14
|0_L9P_T1_DQS_14
|0_LON_T1_DQS_D13_14
|0_L10P_T1_D14_14
|0_L10N_T1_D15_14
|0_L11P_T1_SRCC_14
|0_L11N_T1_SRCC_14
10_L12P_T1_MRCC_14
|0_L12N_T1_MRCC_14
|0_L13P_T2_MRCC_14
|0_L13N_T2_MRCC_14
|0_L14P_T2_SRCC_14
|0_L14N_T2_SRCC_14
|0_L16N_T2_A15_D31_14
|0_L17P_T2_A14_D30_14
10 117N T2 A13 D29 14

6.111 Fall 2019

Al

M3 SW2

18 [ED4
~T18 SW5

14 LED3

14 ANZ

T7 BTNC

18 BTND

16 LED16 G

17 BTNR
“*N15 LED16 R
~*N16 LED17 R

17 BTNL

17 SWA4

15 CE

15 SW3

14 ANS

15 LED9

16 LEDS

17 LED6

18 SW6

e~

IOSTANDARD LVCMOS33 }

46

Constraint File

 Text file (.XDC) containing the mapping from a device independent

HDL circuit net to the physical I/O pin. This allows Verilog (HDL) to
be device independent.

set_property -dict { PACKAGE_PIN R12 IOSTANDARD LVCMOS33 }
[get_ports { led16_b }]; #10_L5P_TO D06 14 Sch=led16 b

— led16_b is physically tied to IC package R pin 12
— Voltage spec based on low voltage CMOS 3.3
— Schematic name is led16_b #1O_L5P_TO D06 14

« All signals defined in XDC but commented out.

SystemVerilog logic values

Since we're describing hardware, we’ll need to represent the values
that can appear on wires. SystemVerilog uses a 4-valued logic:

When using a tri-state bus, we’ll need to represent the values that can
appear on bus and need to use Verilog with a 4-valued logic:

Value | Meaning

tH

0 Logic zero, “low
1 Logic one, “high”
Z or ? | High impedance (tri-state buses)

X Unknown value (simulation)

“X" is used by simulators when a wire hasn’t been initialized to a known value
or when the predicted value is an illegitimate logic value (e.g., due to
contention on a tri-state bus).

Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, unspecified width
‘d123 // ‘d decimal radix

‘h7B // ‘h = hex radix

‘0173 // ‘o = octal radix

‘b111_1011 // ‘b = binary radix, “_” are ignored

“hxx // can include X, Z or ? in non-decimal constants
16°d5 // 16-bit constant ‘b0000_0000_0000_0101

11’ h1X? // 11-bit constant ‘bO01_XXXX_Z7777

By default constants are unsigned and will be extended with 0’s on
left if need be (if high-order bit is X or Z, the extended bits will be X or
Z too). You can specify a signed constant as follows:

8’ shFF // 8-bit twos-complement representation of -1

To be absolutely clear in your intent it's usually best to explicitly
specify the width and radix.

Lecture 2 6.111 Fall 2019 49

Logic (SystemVerilog) Wires (Verilog)

We have to provide declarations® for all our named wires (aka “nets”).
We can create buses — indexed collections of wires — by specifying
the allowable range of indices in the declaration:

logic a,b,z; // three 1-bit wires
Togic [31:0] memdata; // a 32-bit bus

logic [7:0] bl,b2,b3,b4; // four 8-bit buses
Togic [W-1:0] input; // parameterized bus

Note that [0:7] and [7:0] are both legitimate but it pays to develop a
convention and stick with it. Common usage is [MSB:LSB] where
MSB > LSB; usually LSB is 0. Note that we can use an expression in
our index declaration but the expression’s value must be able to be
determined at compile time. We can also build unnamed buses via
concatenation:

{bl,b2,b3,b4} // 32-bit bus, bl is [31:24], b2 is [23:16], ..
{4{b1[3:0]},16°h0000} // 32-bit bus, 4 copies of b1[3:0], 16 0’s

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get you into
trouble. Specify “ default_nettype none” at the top of your source files to avoid this bogus
behavior.

Verilog Syntax
- Bit selected allowed on a wire but not sum
logic [2:0] sum;
sum = sw[1:0] + sw[3:2];

assign led r = sum[1];

I A}

assign led r = {swii=0d + sw[3:2]DI[2];

» Assign not allowed in always block

Gesture Controlled Drone
Fall 2014

« Track hands with a camera and
determine x,y coordinates

 Based on movement of the
LEEGROSS ™\ coordinates, recognize gestures.

BENJAMIN SCHRECK

« Generate real time digital signals
. and convert to analog format for

— | transmission to drone — controlling
1 pitch, roll, hover

T

* Innovation: using hand motion and
recognition of gestures to control
flight

