
Logic Synthesis
• Primitive logic gates, universal gates
• Truth tables and sum-of-products
• Logic simplification, Karnaugh Maps
• General implementation techniques: 

muxes and look-up tables (LUTs)
• Nexy4 
• Verilog basics
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Reminder: Lab #1 due this Thu/Fri

Handouts
• lecture slides, 
• LPset #2

Lab Hours
Lab hours:    eds.mit.edu/labs
Sun 1-11:45p, M-R 9-11:45p,  F 9-5p
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Late Policies

• Lab 1 check-offs (early) – sign-up on checkoff queue in lab – FIFO 
during staffed lab hours.   Note bench number…

• Please don’t assume that you can wait until the last minute!
• No check-offs  Saturday
• Checkoff:  Lab 1:  Thu 5p, Fri 1pm. 
• Lab grade = Checkoff + Verilog grade (when needed)
• Late labs:  

• 1 point/day late penalty (no penalty for Saturday)
• Late completed labs will receive 1 point.
• 5 slack days available. This covers illness, interviews, 

overload, etc. 
• A missing lab will result in a failing grade. We’ve learned that if you’re 

struggling with the labs, the final project won’t go very well.

• Lpset – no late submissions. Solutions at times presented in lecture.

Lecture 2 36.111 Fall 2019

Checkoff Process

• May checkoff at any time prior to checkoff date.
• On checkoff date, checkoff will staff’s be main priority
• Two checkoff dates:  last name  A-M (Thu),  N-Z (Fri)
• Thu checkoff starts at 5pm, Fri 1pm
• Schedule time on google doc
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Conflicts

Check for conflicting dates
https://unical.csail.mit.edu/fa19
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Schematics & Wiring

• IC power supply connections generally not drawn. 
All integrated circuits need power!

• Use standard color coded wires to avoid 
confusion. 

– red: positive 
– black: ground or common reference point
– Other colors:  signals

• Circuit flow, signal flow left to right
• Higher voltage on top, ground negative voltage on 

bottom
• Neat wiring helps in debugging!
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Wire Gauge

• Wire gauge:  diameter is inversely proportional 
to the wire gauge number. Diameter increases 
as the wire gauge decreases. 2, 1, 0, 00, 
000(3/0) up to 7/0.

• Resistance
– 22 gauge .0254 in  16 ohm/1000 feet
– 12 gauge .08 in    1.5 ohm/1000 feet
– High voltage AC used to reduce loss

• 1 cm cube of copper has a resistance of 1.68 
micro ohm (resistance of copper wire scales 
linearly : length/area)
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By Cmglee CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16991155

2019 7nm Ryzen



Timing Specifications
Propagation delay (tPD): An upper bound on the delay 

from valid inputs to valid 
outputs (aka “tPD,MAX”)

Design goal:
minimize
propagation
delay

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH

Lecture 2 6.111 Fall 2019 9

Contamination Delay
an optional, additional timing spec

VOUT > tCD> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need 
tCD?

Usually not… it’ll be 
important when we 
design circuits with 
registers (coming 
soon!)

If tCD is not specified, 
safe to assume it’s 0.

Contamination delay(tCD): A lower bound on the delay 
from invalid inputs to invalid 
outputs (aka “tPD,MIN”)
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The Combinational Contract
Design and Parts Quality

A B
A  B
0  1
1  0

tPD propagation delay
tCD contamination delay

A

B

Must be ___________

Must be ___________

Note:
1. No Promises during 
2. Default (conservative) spec: tCD = 0

< tPD

> tCD
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Functional Specifications

Output “1” if at 
least 2 out of 3 of

my inputs are a “1”.
Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after 
seeing valid inputs

input A

input B

input C

output Y

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An concise, unambiguous technique for giving the functional specification 
of a combinational device is to use a truth table to specify the output 
value for each possible combination of input values (N binary inputs -> 2N

possible combinations of input values).

3 binary inputs
so 23 = 8 rows in our truth table
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Here’s a Design Approach

-it’s systematic!
-it works!
-it’s easy!
-are we done yet???

1. Write out our functional spec as a truth table
2. Write down a Boolean expression with terms 

covering  each ‘1’ in the output:

This approach creates equations of a particular 
form called

SUM-OF-PRODUCTS

Sum (+): ORs

Products (•): ANDs

Y  A  B C  A  B C  A  B C  A  B C

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Verilog:  ||
Verilog:  &&

S-O-P Building Blocks

INVERTER:  A 

A Z
0 1
1 0

AND:  A  B

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

OR:  A  B

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

Bubble indicates
inversion
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assign Z = !A

assign Z = A && B

assign Z = A || B
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Basic Boolean operators
• Bitwise operators perform bit-oriented operations on vectors

• ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
• 4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001

• Logical operators return one-bit (true/false) results
• !(4’b0101) = 1’b0

~a NOT

a & b AND

a | b OR

a ^ b XOR

a ~^ b
a ^~ b

XNOR

Bitwise Logical
!a NOT

a && b AND

a || b OR

a == b
a != b

[in]equality
returns x when x 
or z in bits. Else 
returns 0 or 1

a === b
a !== b

case 
[in]equality
returns 0 or 1 

based on bit by bit 
comparison

Note distinction between ~a and !a 
when operating on multi-bit values

Straightforward Synthesis

We can use
SUM-OF-PRODUCTS

to implement any logic
function.

Only need 3 gate types:
INVERTER, AND, OR

Propagation delay:
• 3 levels of logic
• No more than 3 gate delays assuming gates with an arbitrary number 

of inputs.  But, in general, we’ll only be able to use gates with a 
bounded number of inputs (bound is ~4 for most logic families).
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Y  A  B C  A  B C  A  B C  A  B C



ANDs and ORs with > 2 inputs

 A  B C

 A  B C  D

 A  B C  D

Which one should I use?

Chain: Propagation delay increases 
linearly with number of inputs

Tree: Propagation delay increases 
logarithmically with number of inputs
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SOP w/ 2-input gates

INV AND2 OR2

tPD 8ps 15ps 18ps
tCD 1ps 3ps 3ps

Previous example restricted to 2-input gates:
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Y  A  B C  A  B C  A  B C  A  B C

Using the timing specs given to the 
left, what are tPD and tCD for this 
combinational circuit?

Hint: to find overall tPD we need to 
find max tPD considering all paths 
from inputs to outputs.

More Building Blocks

NAND (not AND)

 A  B

NOR (not OR)

 A  B

XOR (exclusive OR)

 A  B

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

CMOS gates are naturally inverting so we want to use NANDs and NORs in 
CMOS designs…

XOR is very useful when implementing 
parity and arithmetic logic.  Also used as a 
“programmable inverter”: if A=0, Z=B; if 
A=1, Z=~B

Wide fan-in XORs can be created with 
chains or trees of 2-input XORs.

A B Z
0 0 1
0 1 1
1 0 1
1 1 0

A B Z
0 0 1
0 1 0
1 0 0
1 1 0
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assign Z = !(A&&B) assign Z = !(A||B)

assign Z =  A^B

NAND – NOR Internals

Lecture 2 6.111 Fall 2019 20

Y
Y



Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or, 
equivalently, NORs).  Note that chaining/treeing technique 
doesn’t work directly for creating wide fan-in NAND or NOR 
gates.  But wide fan-in gates can be created with trees 
involving both NANDs, NORs and inverters.

=
=

=

=
=

=
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SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of 
De Morgan’s laws:

NAND form:

NOR form:

So the following “SOP” circuits are all equivalent (note the use of 
De Morgan-ized symbols to make the inversions less confusing):

A  B  A  B

A  B  A  B

=

=

AND/OR form NAND/NAND form NOR/NOR form
All these “extra” inverters may seem less 
than ideal but often the buffering they 
provide will reduce the capacitive load on 
the inputs and increase the output drive.

This will be handy in Lab 1 since 
you’ll be able to use just 7400’s to 
implement your circuit!

De Morgan-ized NAND symbol

De Morgan-ized NOR symbol

De Morgan-ized
Inverter
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Logic Simplification

• Can we implement the same function with fewer gates? Before trying 
we’ll add a few more tricks in our bag.

• BOOLEAN ALGEBRA:
OR rules:
AND rules:
Commutative:
Associative:
Distributive:
Complements:
Absorption:
De Morgan’s Law:
Reduction:

a 11 a  0  a a  a  a
aaaaaa  001

a  b  b  a a  b  b  a
(a  b)  c  a  (b  c) (a  b)  c  a  (b  c)
a  (b  c)  a  b  a  c a  b  c  (a  b)  (a  c)
a  a 1 a  a  0
a  a  b  a a  a  b  a  b a  (a  b)  a a  (a  b)  a  b

a  b  a  b  b (a  b)  (a  b)  b
a  b  a  b a  b  a  b

Key to simplification: equations that match the pattern of the LHS (where “b” 
might be any expression) tell us that when “b” is true, the value of “a” doesn’t 
matter.  So “a” can be eliminated from the equation, getting rid of two 2-input 
ANDs and one 2-input OR.
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Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:

Using the identity

  AA

For any expression α and variable A:

Y  A  B C  A  B C  A  B C  A  B C

Y  A  B C  A  B C  A  B C  A  B C

Y  B C  A C  A  B

The tricky part: some terms participate in more than one reduction 
so can’t do the algebraic steps one at a time!
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Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right edge.   
It’s really just a flattened out cube. 

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled in with 
the values from our truth table:

K-Map: a truth table arranged so that terms which differ by exactly one 
variable are adjacent to one another so we can see potential  reductions 
easily.

Why did he
shade that
row Gray?

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1
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On to Hyperspace

Here’s a 4-variable K-map:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

We run out of steam at 4 variables – K-maps are hard to draw and use 
in three dimensions (5 or 6 variables) and we’re not equipped to use 
higher dimensions (> 6 variables)!

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1
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Finding Subcubes

We can identify clusters of “irrelevent” variables by circling adjacent 
subcubes of 1s. A subcube is just a lower dimensional cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes

(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Three 2x1 subcubes Three 2x2 subcubes
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Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

We’re done!

AB
00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

Y  A C  B C  A  B

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Z  B  D B C  A C
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Two-Level Boolean Minimization
Two-level Boolean minimization is used to find a sum-of-products 
representation for a multiple-output Boolean function that is optimum 
according to a given cost function.  The typical cost functions used are 
the number of product terms in a two-level realization, the number of 
literals, or a combination of both. The two steps in two-level Boolean 
minimization are:

•Generation of the set of prime product-terms for a given function.

•Selection of a minimum set of prime terms to implement the function.

We will briefly describe the Quine-McCluskey method which was the 
first algorithmic method proposed for two-level minimization and which 
follows the two steps outlined above.  State-of-the-art logic minimization 
algorithms are all based on the Quine-McCluskey method and also 
follow the two steps above.
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Prime Term Generation
Start by expressing your Boolean function using 0-terms 
(product terms with no don’t care care entries).   For 
compactness the table for example 4-input, 1-output 
function F(w,x,y,z) shown to the right includes only entries 
where the output of the function is 1 and we’ve labeled 
each entry with it’s decimal equivalent.

W X Y Z  label
0 0 0 0    0
0 1 0 1    5
0 1 1 1    7
1 0 0 0    8
1 0 0 1    9
1 0 1 0   10
1 0 1 1   11
1 1 1 0   14
1 1 1 1   15

Look for pairs of 0-terms that differ in only one bit position and merge them in 
a 1-term (i.e., a term that has exactly one ‘–’ entry).  Next 1-terms are 
examined in pairs to see if the can be merged into 2-terms, etc.  Mark k-terms 
that get merged into (k+1) terms so we can discard them later.

0, 8  -000
5, 7  01-1
7,15  -111
8, 9  100-
8,10  10-0
9,11  10-1

10,11  101-
10,14  1-10
11,15  1-11
14,15  111-

1-terms: 8, 9,10,11  10--
10,11,14,15  1-1-

2-terms:

3-terms: none!

Label unmerged terms: 
these terms are prime!

[A]
[B]
[C]

[D]
[E]

Example due to 
Srini Devadas
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F = f(W,X,Y,Z)

Prime Term Table

An “X” in the prime term table in row R and column K signifies that the 0-term 
corresponding to row R is contained by the prime corresponding to column K.

A B C D E
0000  X . . . .
0101  . X . . .
0111  . X X . .
1000  X . . X .
1001  . . . X .
1010  . . . X X
1011  . . . X X
1110  . . . . X
1111  . . X . X

Each row with a single X signifies an essential prime term since any prime 
implementation will have to include that prime term because the 
corresponding 0-term is not contained in any other prime.

A is essential  -000
B is essential   01-1

D is essential   10--

E is essential   1-1-

In this example the essential primes “cover” all the 0-terms.

Goal: select the minimum 
set of primes (columns) 
such that there is at least 
one “X” in every row.  This 
is the classical minimum 
covering problem.

Lecture 2 316.111 Fall 2019

F = f(W,X,Y,Z) = XYZ + WXZ + WX + WY

Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

FA

A B

Co Ci

S

The sum S doesn’t have a simple sum-of-products implementation 
even though it can be implemented using only two 2-input XOR 
gates.

Full Adder

C/AB 00 01 11 10 

0 0 0 1 0 

1 0 1 1 1 
 

 

C/AB 00 01 11 10 

0 0 1 0 1 

1 1 0 1 0 
 

 

S

CO

S  A B C  A B C  A B C  A B C  A BCi

CO  A C  B C  A  B
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Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B

C

A
Y

A

B

C

0

1

schematic Gate
symbol

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree
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Systematic Implementation of
Combinational Logic

Consider implementation of some 
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this 
time let’s use a 4-input mux

Full-Adder
Carry Out Logic

0
1
2
3

A,B

Cout

0
Cin
Cin
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Xilinx Virtex II FPGA

XC2V6000:
• 957 pins, 684 IOBs
• CLB array: 88 cols x 96/col = 8448 CLBs
• 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
• 18x18 multipliers = 6 cols x 24/col = 144 multipliers

Figures from Xilinx Virtex II datasheetLecture 2 366.111 Fall 2019



Virtex II CLB

Figures from Xilinx Virtex II datasheet

16 bits of RAM which can be configured as a 16x1 
single- or dual-port RAM, a 16-bit shift register, or a 
16-location lookup table
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Virtex II Slice Schematic

Figures from Xilinx Virtex II datasheet
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Virtex II Sum-of-products

Figures from Xilinx Virtex II datasheet
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The Need for HDLs

A specification is an engineering contract that lists all the goals for a 
project:

• goals include area, power, throughput, latency, functionality, test 
coverage, costs (NREs and piece costs), …   Helps you figure out 
when you’re done and how to make engineering tradeoffs.  Later on, 
goals help remind everyone (especially management) what was 
agreed to at the outset!

• top-down design: partition the project into modules with well-defined 
interfaces so that each module can be worked on by a separate team.   
Gives the SW types a head start too!  (Hardware/software codesign is 
currently all the rage…)

• Example – a well defined Instruction Set Architecture (ISA)
can last for generations …



Lecture 2 6.111 Fall 2019 41

The Need for HDLs (cont’d.)

A behavioral model serves as an executable functional 
specification that documents the exact behavior of all the 
individual modules and their interfaces.  Since one can run tests, 
this model can be refined and finally verified through simulation.

We need a way to talk about what hardware should do without 
actually designing the hardware itself, i.e., we need to separate 
behavior from implementation.  We need a 

Hardware Description Language

If we were then able to synthesize an implementation directly from 
the behavioral model, we’d be in good shape!

Lecture 2 6.111 Fall 2019 42

Using an HDL description
So, we have an executable functional specification that

• documents exact behavior of all the modules and their 
interfaces

• can be tested & refined until it does what we want

An HDL description is the first step in a mostly automated process 
to build an implementation directly from the behavioral model

Logic Synthesis Place & routeHDL
description

Gate
netlist

CPLD
FPGA

Stdcell ASIC• HDL logic
• map to target library (LUTs)
• optimize speed, area

• create floor plan blocks
• place cells in block
• route interconnect
• optimize (iterate!)

Physical designFunctional design
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A Tale of Two HDLs
VHDL Verilog

ADA-like verbose syntax, lots of 
redundancy (which can be good!)

C-like concise syntax

Extensible types and simulation 
engine.  Logic representations are 
not built in and have evolved with 
time (IEEE-1164).

Built-in types and logic 
representations.  Oddly, this led to 
slightly incompatible simulators
from different vendors.

Design is composed of entities
each of which can have multiple 
architectures. A configuration
chooses what architecture is used 
for a given instance of an entity.

Design is composed of modules.

Behavioral, dataflow and structural 
modeling. Synthesizable subset...

Behavioral, dataflow and structural 
modeling. Synthesizable subset...

Harder to learn and use, not 
technology-specific, DoD mandate

Easy to learn and use, fast 
simulation, good for hardware 
design
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Analog Input or digital I/O

16 Switches,  7 segment LED

PWM Audio Out

Microphone

(4)  8 User I/O

12 bit VGA 

ADI 
temperature
sensor

Ethernet

USB HID

5 Pushbuttoms

ADX362 3-axis accelerometer



Nexys4 Schematic
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XDC to Hardware 
Mapping

set_property -dict { PACKAGE_PIN R12 IOSTANDARD LVCMOS33 }
[get_ports { led16_b }]; #IO_L5P_T0_D06_14 Sch=led16_b
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Constraint File

• Text file (.XDC) containing the mapping from a device independent 
HDL circuit net to the physical I/O pin.  This allows Verilog (HDL) to 
be device independent.

– led16_b  is physically tied to IC package R pin 12
– Voltage spec based on low voltage CMOS 3.3
– Schematic name is led16_b #IO_L5P_T0_D06_14

• All signals defined in XDC but commented out. 

set_property -dict { PACKAGE_PIN R12   IOSTANDARD LVCMOS33 }
[get_ports { led16_b }]; #IO_L5P_T0_D06_14 Sch=led16_b
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When using a tri-state bus, we’ll need to represent the values that can 
appear on bus and need to use  Verilog with a 4-valued logic:

Value Meaning
0 Logic zero, “low”
1 Logic one, “high”

Z or ? High impedance (tri-state buses)
X Unknown value (simulation)

“X” is used by simulators when a wire hasn’t been initialized to a known value 
or when the predicted value is an illegitimate logic value (e.g., due to 
contention on a tri-state bus).

SystemVerilog logic values

Since we’re describing hardware, we’ll need to represent the values 
that can appear on wires. SystemVerilog uses a 4-valued logic:
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Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, unspecified width
‘d123       // ‘d = decimal radix
‘h7B        // ‘h = hex radix
‘o173       // ‘o = octal radix
‘b111_1011  // ‘b = binary radix, “_” are ignored
‘hxx // can include X, Z or ? in non-decimal constants
16’d5       // 16-bit constant ‘b0000_0000_0000_0101
11’h1X?     // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s on 
left if need be (if high-order bit is X or Z, the extended bits will be X or 
Z too).  You can specify a signed constant as follows:

8’shFF // 8-bit twos-complement representation of -1

To be absolutely clear in your intent it’s usually best to explicitly 
specify the width and radix.
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Logic (SystemVerilog)    Wires (Verilog)
We have to provide declarations* for all our named wires (aka “nets”).   
We can create buses – indexed collections of wires – by specifying 
the allowable range of indices in the declaration:

logic a,b,z;              // three 1-bit wires
logic [31:0] memdata;     // a 32-bit bus
logic [7:0] b1,b2,b3,b4;  // four 8-bit buses
logic [W-1:0] input;      // parameterized bus

Note that [0:7] and [7:0] are both legitimate but it pays to develop a 
convention and stick with it.  Common usage is [MSB:LSB] where 
MSB > LSB; usually LSB is 0.  Note that we can use an expression in 
our index declaration but the expression’s value must be able to be 
determined at compile time.  We can also build unnamed buses via 
concatenation:

{b1,b2,b3,b4}  // 32-bit bus, b1 is [31:24], b2 is [23:16], …
{4{b1[3:0]},16’h0000}  // 32-bit bus, 4 copies of b1[3:0], 16 0’s

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get you into 
trouble.  Specify “`default_nettype none” at the top of your source files to avoid this bogus 
behavior.

Verilog Syntax
• Bit selected allowed on a wire but not sum

 logic [2:0] sum;
sum = sw[1:0] + sw[3:2];
assign led_r = sum[1];

assign led_r = (sw[1:0] + sw[3:2])[2];

• Assign not allowed in always block
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• Track hands with a camera and 
determine x,y coordinates

• Based on movement of the 
coordinates, recognize gestures.

• Generate real time digital signals 
and convert to analog format for 
transmission to drone – controlling 
pitch, roll, hover

• Innovation: using hand motion and 
recognition of gestures to control 
flight




