

Logic Synthesis

- Primitive logic gates, universal gates
- Truth tables and sum-of-products
- Logic simplification, Karnaugh Maps
- General implementation techniques: muxes and look-up tables (LUTs)
- Nexy4
- Verilog basics

Reminder: Lab \#1 due this Thu/Fri

Handouts

- lecture slides,
- LPset \#2

Lab Hours

Lab hours: eds.mit.edu/labs Sun 1-11:45p, M-R 9-11:45p, F 9-5p

-ecture 2

6.111 Fall 2019

Checkoff Process

- May checkoff at any time prior to checkoff date.
- On checkoff date, checkoff will staff's be main priority
- Two checkoff dates: last name A-M (Thu), N-Z (Fri)
- Thu checkoff starts at 5pm, Fri 1pm
- Schedule time on google doc

Check for conflicting dates
https://unical.csail.mit.edu/fa19

Schematics \& Wiring

- IC power supply connections generally not drawn. All integrated circuits need power!
- Use standard color coded wires to avoid confusion.
-red: positive
-black: ground or common reference point
- Other colors: signals
- Circuit flow, signal flow left to right
- Higher voltage on top, ground negative voltage on bottom
- Neat wiring helps in debugging!

Wire Gauge

- Wire gauge: diameter is inversely proportional to the wire gauge number. Diameter increases as the wire gauge decreases. $2,1,0,00$, 000(3/0) up to 7/0.
- Resistance
- 22 gauge .0254 in 16 ohm/1000 feet
- 12 gauge .08 in 1.5 ohm/1000 feet
- High voltage AC used to reduce loss
- 1 cm cube of copper has a resistance of 1.68 micro ohm (resistance of copper wire scales linearly : length/area)

By Cmglee CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?Curid=16991155

Timing Specifications

Propagation delay (t_{PD}): An upper bound on the delay from valid inputs to valid outputs (aka "t $\mathrm{tPD}_{\mathrm{PD}, \mathrm{MX}}$ ")

Contamination Delay

an optional, additional timing spec
Contamination delay $\left(\mathrm{t}_{\mathrm{CD}}\right)$: A lower bound on the delay from invalid inputs to invalid outputs (aka "t $\mathrm{t}_{\mathrm{PD}, \mathrm{MIN}}$ ")

Do we really need Do w

Usually not... it' ll be important when we design circuits with registers (coming soon!)

If t_{CD} is not specified, safe to assume it's 0 .

The Combinational Contract Design and Parts Quality

\qquad

Note:

1. No Promises during
2. Default (conservative) spec: $\mathrm{t}_{\mathrm{CD}}=0$

Functional Specifications

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3 binary inputs
so $2^{3}=8$ rows in our truth table
An concise, unambiguous technique for giving the functional specification of a combinational device is to use a truth table to specify the output value for each possible combination of input values (N binary inputs $->2^{\mathrm{N}}$ possible combinations of input values).

Here's a Design Approach

1. Write out our functional spec as a truth table

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

-it's systematic

-it works!
-itworks!
-its easy!
-are we done yet???
2. Write down a Boolean expression with terms covering each ' 1 ' in the output
$Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C$

This approach creates equations of a particular form called

SUM-OF-PRODUCTS

Sum (+): ORs	Verilog: \\|I
Products (•): ANDs	

S-O-P Building Blocks

Basic Boolean operators

- Bitwise operators perform bit-oriented operations on vectors
- $\sim\left(4^{\prime} b 0101\right)=\{\sim 0, \sim 1, \sim 0, \sim 1\}=4^{\prime} b 1010$
- $4^{\prime} \mathrm{b} 0101 \& 4^{\prime} \mathrm{b} 0011=\{0 \& 0,1 \& 0,0 \& 1,1 \& 1\}=4^{\prime} \mathrm{b} 0001$
- Logical operators return one-bit (true/false) results
- ! $\left(4^{\prime} b 0101\right)=1^{\prime} b 0$
Bitwise

$\sim a$	NOT
$a \& b$	AND
$a \mid b$	OR
$a^{\wedge} b$	XOR
$a \sim^{\wedge} b$ $a^{\wedge} \sim b$	XNOR

Note distinction between $\sim a$ and !a
when operating on multi-bit values
Logical

$!\mathrm{a}$	NOT	
a \& \& b	AND	
$\mathrm{a} \\| \mathrm{b}$	OR	
$\mathrm{a}==\mathrm{b}$		
$\mathrm{a}!=\mathrm{b}$	[in]equality returns \times when x or z in bits. Else returns 0 or 1	
$\mathrm{a}===\mathrm{b}$ $\mathrm{a}!=\mathrm{b}$	case [in]equality returns 0 or 1 based on bit ty bit comparison	

ANDs and ORs with > 2 inputs

SOP w/ 2-input gates

Previous example restricted to 2-input gates:

Using the timing specs given to the left, what are $t_{P D}$ and $t_{C D}$ for this combinational circuit?

Hint: to find overall $t_{P D}$ we need to find max $t_{P D}$ considering all paths from inputs to outputs.

More Building Blocks

CMOS gates are naturally inverting so we want to use NANDs and NORs in CMOS designs..

NAND - NOR Internals

Dual-In-Line Package

This device contains four independent gates each of which performs the logic NAND function.

NAND

NOR

Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or, equivalently, NORs). Note that chaining/treeing technique doesn't work directly for creating wide fan-in NAND or NOR gates. But wide fan-in gates can be created with trees involving both NANDs, NORs and inverters.

Logic Simplification

- Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag.
- BOOLEAN ALGEBRA:

OR rules:	$a \quad a+$
AND rules:	$a \cdot 1=a \quad a \cdot 0=0 \quad a \cdot a=a$
Commutative:	$a+b=b+a \quad a \cdot b=b \cdot a$
Associative:	$(a+b)+c=a+(b+c) \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Distributive:	$a \cdot(b+c)=a \cdot b+a \cdot c \quad a+b \cdot c=(a+b) \cdot(a+c)$
Complements:	$a+\bar{a}=1 \quad a \cdot \bar{a}=0$
Absorption:	$a+a \cdot b=a \quad a+\bar{a} \cdot b=a+b \quad a \cdot(a+b)=a \quad a \cdot(\bar{a}+b)=a \cdot b$
De Morgan's Law:	$\overline{a \cdot b}=\bar{a}+\bar{b} \quad \overline{a+b}=\bar{a} \cdot \bar{b}$
Reduction:	$a \cdot b+\bar{a} \cdot b=b \quad(a+b) \cdot(\bar{a}+b)=b$
	\downarrow

Key to simplification: equations that match the pattern of the LHS (where "b" might be any expression) tell us that when " b " is true, the value of " a " doesn't matter. So "a" can be eliminated from the equation, getting rid of two 2 -input ANDs and one 2-input OR.

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of De Morgan's laws:

De Morgan-ized NAND symbo
NAND form: $\overline{A \cdot B}=\bar{A}+\bar{B}$

NOR form: $\quad \overline{A+B}=\bar{A} \cdot \bar{B}$

So the following "SOP" circuits are all equivalent (note the use of De Morgan-ized symbols to make the inversions less confusing):

AND/OR form

NAND/NAND form This will be handy in Lab 1 since you'll be able to use just 7400's to implement your circuit!

NOR/NOR form
All these "extra" inverters may seem les han ideal but often the buffering they provide will reduce the capacitive load on
the inputs and increase the output drive.

Boolean Minimization:

An Algebraic Approach

Lets simplify the equation from slide \#3:

$$
Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

Using the identity

$$
\alpha A+\alpha \bar{A}=\alpha
$$

For any expression α and variable A :

The tricky part: some terms participate in more than one reduction so can't do the algebraic steps one at a time!

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Here's the layout of a 3-variable K-map filled in with the values from our truth table:

	Y	AB			
		00	01	11	10
	0	0	0	1	0
c	1	0	1	1	1

Why did he shade that
row Gray?

It's cyclic. The left edge is adjacent to the right edge. It's really just a flattened out cube.

On to Hyperspace

Here's a 4-variable K-map:

						$A B$			
	00	01	11	10					
00	1	0	0	1					
01	0	0	0	0					
	11	1	1	0					

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

We run out of steam at 4 variables - K-maps are hard to draw and use in three dimensions (5 or 6 variables) and we're not equipped to use higher dimensions (> 6 variables)!

Finding Subcubes

We can identify clusters of "irrelevent" variables by circling adjacent subcubes of 1 s . A subcube is just a lower dimensional cube.

> AB
> C

Three 2×1 subcubes

Three 2×2 subcubes
The best strategy is generally a greedy one.

- Circle the largest N -dimensional subcube (2^{N} adjacent 1 's)

$$
4 \times 4,4 \times 2,4 \times 1,2 \times 2,2 \times 1,1 \times 1
$$

- Continue circling the largest remaining subcubes (even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

Write Down Equations

Write down a product term for the portion of each cluster/subcube that is invariant. You only need to include enough terms so that all the 1's are covered. Result: a minimal sum of products expression for the truth table.
 We're done!
CD

$A B$				
	00	01	11	10
00	$1 \vdots$	0	0	$\vdots 1$
01	0	0	0	0
11	1	1	0	1
10	1	1	0	1

Two-Level Boolean Minimization

Two-level Boolean minimization is used to find a sum-of-products representation for a multiple-output Boolean function that is optimum according to a given cost function. The typical cost functions used are the number of product terms in a two-level realization, the number of literals, or a combination of both. The two steps in two-level Boolean minimization are:
-Generation of the set of prime product-terms for a given function.
Selection of a minimum set of prime terms to implement the function.
We will briefly describe the Quine-McCluskey method which was the first algorithmic method proposed for two-level minimization and which follows the two steps outlined above. State-of-the-art logic minimization algorithms are all based on the Quine-McCluskey method and also follow the two steps above.

Prime Term Generation

Start by expressing your Boolean function using 0-terms (product terms with no don't care care entries). For compactness the table for example 4-input, 1-output function $F(w, x, y, z)$ shown to the right includes only entries where the output of the function is 1 and we've labeled each entry with it's decimal equivalent.
$\mathrm{F}=\mathrm{f}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$
W X Y Z label
0000
0101
0111
100
1001
$\begin{array}{lllll}1 & 0 & 1 & 0 & 10 \\ 1 & 0 & 1 & 1 & 11\end{array}$
01111
$\begin{array}{lllll}1 & 1 & 0 & 14 \\ 1 & 1 & 1 & 15\end{array}$
Look for pairs of 0 -terms that differ in only one bit position and merge them in a 1 -term (i.e., a term that has exactly one '-' entry). Next 1-terms are examined in pairs to see if the can be merged into 2-terms, etc. Mark k-terms that get merged into $(k+1)$ terms so we can discard them later

1-terms:	0, 8	-000 [A]	2-terms:	$\begin{array}{r} 8,9,10,11 \\ 10,11,14,15 \end{array}$	$\begin{aligned} & 10-[\mathrm{D}] \\ & 1-1-[\mathrm{E}] \end{aligned}$		
	5, 7	01-1 [B]					
	7,15	-111 [C]					
	8, 9	100-					
	8,10	10-0	3-terms:	none!			
Example due to Srini Devadas	9,11	10-1	Label unmerged terms: these terms are prime!				
	10,11	101-					
	10, 14	1-10					
	11,15	1-11					
	14,15	111-					

Prime Term Table

An " X " in the prime term table in row R and column K signifies that the 0 -term corresponding to row R is contained by the prime corresponding to column K .
Goal: select the minimum
set of primes (columns)
such that there is at least
one " X " in every row. This
is the classical minimum
covering problem.

0000	A B C D E	ntial -000
0101	X	$\longrightarrow B$ is essential
0111	X X	
1000	X . . x	
1001	X	$\longrightarrow \mathrm{D}$ is essential $10-\mathrm{l}$
1010	. X X	
1011	X X	
1110	. . . X	$\rightarrow \mathrm{E}$ is essential
1111	X	

Each row with a single X signifies an essential prime term since any prime implementation will have to include that prime term because the corresponding 0 -term is not contained in any other prime

In this example the essential primes "cover" all the 0-terms

$$
F=f(W, X, Y, Z)=\bar{X} \bar{Y} \bar{Z}+\bar{W} X Z+W \bar{X}+W Y
$$

Logic that defies SOP simplification

C_{i}	A	B	S	C_{0}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
S & =\bar{A} \cdot B \cdot \bar{C}+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot B \cdot C=A \oplus B \oplus C_{i} \\
C_{O} & =A \cdot C+B \cdot C+A \cdot B
\end{aligned}
$$

The sum S doesn't have a simple sum-of-products implementation even though it can be implemented using only two 2 -input XOR gates.

Logic Synthesis Using MUXes

2-input Multiplexer

Truth Table		
C B A y 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1		

Gate symbol

6.111 Fall 2019

A 4-input Mux implemented as a tree

schematic

Systematic Implementation of Combinational Logic

Same function as on previous slide, but this time let's use a 4-input mux

Systematic Implementation of Combinational Logic

Consider implementation of some arbitrary Boolean function, $F(A, B)$

XC2V6000:

- 957 pins, 684 IOBs
- CLB array: 88 cols $\times 96 / \mathrm{col}=8448$ CLBs
- 18 Kbit BRAMs $=6$ cols $\times 24 / \mathrm{col}=144$ BRAMs $=2.5 \mathrm{Mbits}$
- 18×18 multipliers $=6$ cols $\times 24 / \mathrm{col}=144$ multipliers

16 bits of RAM which can be configured as a 16×1 single- or dual-port RAM, a 16-bit shift register, or a 16-location lookup table

Figures from Xilinx Virtex II datasheet
6.111 Fall 2019

Virtex II Slice Schematic

Virtex-II silce (Top Hali)
6.111 Fall 2019

Virtex II Sum-of-products

Horizontal Cascade Chain

The Need for HDLs

A specification is an engineering contract that lists all the goals for a project:

- goals include area, power, throughput, latency, functionality, test coverage, costs (NREs and piece costs), ... Helps you figure out when you're done and how to make engineering tradeoffs. Later on, goals help remind everyone (especially management) what was agreed to at the outset!
- top-down design: partition the project into modules with well-defined interfaces so that each module can be worked on by a separate team. Gives the SW types a head start too! (Hardware/software codesign is currently all the rage...)
- Example - a well defined Instruction Set Architecture (ISA) can last for generations ...

The Need for HDLs (cont'd.)

A behavioral model serves as an executable functional specification that documents the exact behavior of all the individual modules and their interfaces. Since one can run tests, this model can be refined and finally verified through simulation.

We need a way to talk about what hardware should do without actually designing the hardware itself, i.e., we need to separate behavior from implementation. We need a

Hardware Description Language

If we were then able to synthesize an implementation directly from the behavioral model, we'd be in good shape!

Using an HDL description

So, we have an executable functional specification that

- documents exact behavior of all the modules and their interfaces
- can be tested \& refined until it does what we want

An HDL description is the first step in a mostly automated process to build an implementation directly from the behavioral model

A Tale of Two HDLs

VHDL

ADA-like verbose syntax, lots of redundancy (which can be good!) Extensible types and simulation engine. Logic representations are not built in and have evolved with time (IEEE-1164).

Design is composed of entities each of which can have multiple architectures. A configuration chooses what architecture is used for a given instance of an entity.

Behavioral, dataflow and structural modeling. Synthesizable subset..

Harder to learn and use, not technology-specific, DoD mandate

Verilog
C-like concise syntax
Built-in types and logic representations. Oddly, this led to slightly incompatible simulators from different vendors.

Design is composed of modules.

Behavioral, dataflow and structural modeling. Synthesizable subset..

Easy to learn and use, fast simulation, good for hardware design

XDC to Hardware
Mapping

BANK 14

$10 _0-14 \quad 10$ 149_-10_004_14 $\frac{\text { L18 CG }}{\text { M18 BINU }}$
$10-25$ _14

IO L6N TO DŌ8 VREF-14 M13 SW2
10_L7P_T1_DO9_14 10_L7N-T1_D10-14 10 L8P-T1-D11_14 10_L8N_T1_D12_14 $10 _$L9P_T1_DOS_14 IO_L9N_T1_DQS_D13_14 10 L10N-T1-D15-14 10_L11P_T1_SRCC_14 IO L11N T1_SRCC 14 10-L12P-T1 MRCC 14 $10-L 12 \mathrm{~N}^{-} \mathrm{T} 11 \mathrm{MRCC}-14$ 10_L13P_T2_MRCC_14 IO_L14P_T2 _SRCC_14 10_L14N_T2_SRCC_14 10_L16N_T2_A15_D31_14

$10117 \mathrm{~N}^{-} \mathrm{TV}^{-} \mathrm{A} 13^{-} \mathrm{D} 7 \mathrm{a}^{-14 .} \mathrm{U}$
In I17N T) A13 D79 14 - 4.70
set_property -dict \{ PACKAGE_PIN R12 IOSTANDARD LVCMOS33 \} [get_ports \{ led16_b \}]; \#IO_L5P_T0_D06_14 Sch=led16_b

Constraint File

- Text file (.XDC) containing the mapping from a device independent HDL circuit net to the physical I/O pin. This allows Verilog (HDL) to be device independent.
set_property -dict \{ PACKAGE_PIN R12 IOSTANDARD LVCMOS33 \}
[get_ports \{ led16_b \}]; \#IO_L5P_T0_D06_14 Sch=led16_b
- led16_b is physically tied to IC package R pin 12
- Voltage spec based on low voltage CMOS 3.3
- Schematic name is led16_b \#IO_L5P_T0_D06_14
- All signals defined in XDC but commented out.

SystemVerilog logic values

Since we're describing hardware, we'll need to represent the values that can appear on wires. SystemVerilog uses a 4-valued logic:

When using a tri-state bus, we'll need to represent the values that can appear on bus and need to use Verilog with a 4-valued logic:

Value	Meaning
0	Logic zero, "low"
1	Logic one, "high"
Z or?	High impedance (tri-state buses)
X	Unknown value (simulation)

" X " is used by simulators when a wire hasn't been initialized to a known value or when the predicted value is an illegitimate logic value (e.g., due to contention on a tri-state bus).

Numeric Constants

Constant values can be specified with a specific width and radix:

123	// default: decimal radix, unspecified width
'd123	// 'd = decimal radix
'h7B	// 'h = hex radix
'o173	// 'o = octal radix
'b111_1011	// 'b = binary radix, "_" are ignored
'hxx	// can include X, Z or ? in non-decimal constants
16'd5	// 16-bit constant 'b0000_0000_0000_0101
11'h1X?	// 11-bit constant 'b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0's on left if need be (if high-order bit is X or Z, the extended bits will be X or Z too). You can specify a signed constant as follows:

```
8'shFF // 8-bit twos-complement representation of -1
```

To be absolutely clear in your intent it's usually best to explicitly specify the width and radix.

Logic (SystemVerilog) Wires (Verilog)

We have to provide declarations* for all our named wires (aka "nets"). We can create buses - indexed collections of wires - by specifying the allowable range of indices in the declaration:
logic a,b,z;
logic [31:0] memdata;
logic [7:0] b1,b2,b3,b4;
logic [W-1:0] input;
// three 1-bit wires
// a 32-bit bus
// four 8-bit buses
// parameterized bus

Note that [0:7] and [7:0] are both legitimate but it pays to develop a convention and stick with it. Common usage is [MSB:LSB] where MSB > LSB; usually LSB is 0 . Note that we can use an expression in our index declaration but the expression's value must be able to be determined at compile time. We can also build unnamed buses via concatenation:
\{b1,b2,b3,b4\} // 32-bit bus, b1 is [31:24], b2 is [23:16],... $\{4\{b 1[3: 0]\}, 16$ 'h0000\} // 32 -bit bus, 4 copies of b1[3:0], 160 's

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get you into trouble. Specify "'default_nettype none" at the top of your source files to avoid this bogus behavior.

Verilog Syntax

- Bit selected allowed on a wire but not sum

```
logic [2:0] sum;
    sum = sw[1:0] + sw[3:2];
    assign led_r = sum[1];
    assign led_r = (sw[1:0] + sw[3:2])[2];
```

- Assign not allowed in always block

Gesture Controlled Drone Fall 2014

- Track hands with a camera and determine x, y coordinates
- Based on movement of the coordinates, recognize gestures.
- Generate real time digital signals and convert to analog format for transmission to drone - controlling pitch, roll, hover
- Innovation: using hand motion and recognition of gestures to control flight

