
Logic Synthesis
• Primitive logic gates, universal gates
• Truth tables and sum-of-products
• Logic simplification, Karnaugh Maps
• General implementation techniques:

muxes and look-up tables (LUTs)
• Nexy4
• Verilog basics

Lecture 2 16.111 Fall 2019

Reminder: Lab #1 due this Thu/Fri

Handouts
• lecture slides,
• LPset #2

Lab Hours
Lab hours: eds.mit.edu/labs
Sun 1-11:45p, M-R 9-11:45p, F 9-5p

Lecture 2 6.111 Fall 2019 2

Late Policies

• Lab 1 check-offs (early) – sign-up on checkoff queue in lab – FIFO
during staffed lab hours. Note bench number…

• Please don’t assume that you can wait until the last minute!
• No check-offs Saturday
• Checkoff: Lab 1: Thu 5p, Fri 1pm.
• Lab grade = Checkoff + Verilog grade (when needed)
• Late labs:

• 1 point/day late penalty (no penalty for Saturday)
• Late completed labs will receive 1 point.
• 5 slack days available. This covers illness, interviews,

overload, etc.
• A missing lab will result in a failing grade. We’ve learned that if you’re

struggling with the labs, the final project won’t go very well.

• Lpset – no late submissions. Solutions at times presented in lecture.

Lecture 2 36.111 Fall 2019

Checkoff Process

• May checkoff at any time prior to checkoff date.
• On checkoff date, checkoff will staff’s be main priority
• Two checkoff dates: last name A-M (Thu), N-Z (Fri)
• Thu checkoff starts at 5pm, Fri 1pm
• Schedule time on google doc

Lecture 2 6.111 Fall 2019 4

Lecture 2 6.111 Fall 2019 5

Conflicts

Check for conflicting dates
https://unical.csail.mit.edu/fa19

Lecture 2 6

Schematics & Wiring

• IC power supply connections generally not drawn.
All integrated circuits need power!

• Use standard color coded wires to avoid
confusion.

– red: positive
– black: ground or common reference point
– Other colors: signals

• Circuit flow, signal flow left to right
• Higher voltage on top, ground negative voltage on

bottom
• Neat wiring helps in debugging!

Lecture 2 7

Wire Gauge

• Wire gauge: diameter is inversely proportional
to the wire gauge number. Diameter increases
as the wire gauge decreases. 2, 1, 0, 00,
000(3/0) up to 7/0.

• Resistance
– 22 gauge .0254 in 16 ohm/1000 feet
– 12 gauge .08 in 1.5 ohm/1000 feet
– High voltage AC used to reduce loss

• 1 cm cube of copper has a resistance of 1.68
micro ohm (resistance of copper wire scales
linearly : length/area)

Lecture 2 6.111 Fall 2019 8

By Cmglee CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16991155

2019 7nm Ryzen

Timing Specifications
Propagation delay (tPD): An upper bound on the delay

from valid inputs to valid
outputs (aka “tPD,MAX”)

Design goal:
minimize
propagation
delay

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH

Lecture 2 6.111 Fall 2019 9

Contamination Delay
an optional, additional timing spec

VOUT > tCD> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need
tCD?

Usually not… it’ll be
important when we
design circuits with
registers (coming
soon!)

If tCD is not specified,
safe to assume it’s 0.

Contamination delay(tCD): A lower bound on the delay
from invalid inputs to invalid
outputs (aka “tPD,MIN”)

Lecture 2 6.111 Fall 2019 10

The Combinational Contract
Design and Parts Quality

A B
A B
0 1
1 0

tPD propagation delay
tCD contamination delay

A

B

Must be ___________

Must be ___________

Note:
1. No Promises during
2. Default (conservative) spec: tCD = 0

< tPD

> tCD

Lecture 2 6.111 Fall 2019 11

Functional Specifications

Output “1” if at
least 2 out of 3 of

my inputs are a “1”.
Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

input A

input B

input C

output Y

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An concise, unambiguous technique for giving the functional specification
of a combinational device is to use a truth table to specify the output
value for each possible combination of input values (N binary inputs -> 2N

possible combinations of input values).

3 binary inputs
so 23 = 8 rows in our truth table

Lecture 2 126.111 Fall 2019

Here’s a Design Approach

-it’s systematic!
-it works!
-it’s easy!
-are we done yet???

1. Write out our functional spec as a truth table
2. Write down a Boolean expression with terms

covering each ‘1’ in the output:

This approach creates equations of a particular
form called

SUM-OF-PRODUCTS

Sum (+): ORs

Products (•): ANDs

Y A B C A B C A B C A B C

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Lecture 2 136.111 Fall 2019

Verilog: ||
Verilog: &&

S-O-P Building Blocks

INVERTER: A

A Z
0 1
1 0

AND: A B

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

OR: A B

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

Bubble indicates
inversion

Lecture 2 146.111 Fall 2019

assign Z = !A

assign Z = A && B

assign Z = A || B

Lecture 2 6.111 Fall 2019 15

Basic Boolean operators
• Bitwise operators perform bit-oriented operations on vectors

• ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
• 4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001

• Logical operators return one-bit (true/false) results
• !(4’b0101) = 1’b0

~a NOT

a & b AND

a | b OR

a ^ b XOR

a ~^ b
a ^~ b

XNOR

Bitwise Logical
!a NOT

a && b AND

a || b OR

a == b
a != b

[in]equality
returns x when x
or z in bits. Else
returns 0 or 1

a === b
a !== b

case
[in]equality
returns 0 or 1

based on bit by bit
comparison

Note distinction between ~a and !a
when operating on multi-bit values

Straightforward Synthesis

We can use
SUM-OF-PRODUCTS

to implement any logic
function.

Only need 3 gate types:
INVERTER, AND, OR

Propagation delay:
• 3 levels of logic
• No more than 3 gate delays assuming gates with an arbitrary number

of inputs. But, in general, we’ll only be able to use gates with a
bounded number of inputs (bound is ~4 for most logic families).

Lecture 2 166.111 Fall 2019

Y A B C A B C A B C A B C

ANDs and ORs with > 2 inputs

 A B C

 A B C D

 A B C D

Which one should I use?

Chain: Propagation delay increases
linearly with number of inputs

Tree: Propagation delay increases
logarithmically with number of inputs

Lecture 2 176.111 Fall 2019

SOP w/ 2-input gates

INV AND2 OR2

tPD 8ps 15ps 18ps
tCD 1ps 3ps 3ps

Previous example restricted to 2-input gates:

Lecture 2 186.111 Fall 2019

Y A B C A B C A B C A B C

Using the timing specs given to the
left, what are tPD and tCD for this
combinational circuit?

Hint: to find overall tPD we need to
find max tPD considering all paths
from inputs to outputs.

More Building Blocks

NAND (not AND)

 A B

NOR (not OR)

 A B

XOR (exclusive OR)

 A B

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

CMOS gates are naturally inverting so we want to use NANDs and NORs in
CMOS designs…

XOR is very useful when implementing
parity and arithmetic logic. Also used as a
“programmable inverter”: if A=0, Z=B; if
A=1, Z=~B

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

A B Z
0 0 1
0 1 1
1 0 1
1 1 0

A B Z
0 0 1
0 1 0
1 0 0
1 1 0

Lecture 2 196.111 Fall 2019

assign Z = !(A&&B) assign Z = !(A||B)

assign Z = A^B

NAND – NOR Internals

Lecture 2 6.111 Fall 2019 20

Y
Y

Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or,
equivalently, NORs). Note that chaining/treeing technique
doesn’t work directly for creating wide fan-in NAND or NOR
gates. But wide fan-in gates can be created with trees
involving both NANDs, NORs and inverters.

=
=

=

=
=

=

Lecture 2 216.111 Fall 2019

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of
De Morgan’s laws:

NAND form:

NOR form:

So the following “SOP” circuits are all equivalent (note the use of
De Morgan-ized symbols to make the inversions less confusing):

A B A B

A B A B

=

=

AND/OR form NAND/NAND form NOR/NOR form
All these “extra” inverters may seem less
than ideal but often the buffering they
provide will reduce the capacitive load on
the inputs and increase the output drive.

This will be handy in Lab 1 since
you’ll be able to use just 7400’s to
implement your circuit!

De Morgan-ized NAND symbol

De Morgan-ized NOR symbol

De Morgan-ized
Inverter

Lecture 2 226.111 Fall 2019

Logic Simplification

• Can we implement the same function with fewer gates? Before trying
we’ll add a few more tricks in our bag.

• BOOLEAN ALGEBRA:
OR rules:
AND rules:
Commutative:
Associative:
Distributive:
Complements:
Absorption:
De Morgan’s Law:
Reduction:

a 11 a 0 a a a a
aaaaaa 001

a b b a a b b a
(a b) c a (b c) (a b) c a (b c)
a (b c) a b a c a b c (a b) (a c)
a a 1 a a 0
a a b a a a b a b a (a b) a a (a b) a b

a b a b b (a b) (a b) b
a b a b a b a b

Key to simplification: equations that match the pattern of the LHS (where “b”
might be any expression) tell us that when “b” is true, the value of “a” doesn’t
matter. So “a” can be eliminated from the equation, getting rid of two 2-input
ANDs and one 2-input OR.

Lecture 2 236.111 Fall 2019

Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:

Using the identity

 AA

For any expression α and variable A:

Y A B C A B C A B C A B C

Y A B C A B C A B C A B C

Y B C A C A B

The tricky part: some terms participate in more than one reduction
so can’t do the algebraic steps one at a time!

Lecture 2 246.111 Fall 2019

Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right edge.
It’s really just a flattened out cube.

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled in with
the values from our truth table:

K-Map: a truth table arranged so that terms which differ by exactly one
variable are adjacent to one another so we can see potential reductions
easily.

Why did he
shade that
row Gray?

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

Lecture 2 256.111 Fall 2019

On to Hyperspace

Here’s a 4-variable K-map:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

We run out of steam at 4 variables – K-maps are hard to draw and use
in three dimensions (5 or 6 variables) and we’re not equipped to use
higher dimensions (> 6 variables)!

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Lecture 2 266.111 Fall 2019

Finding Subcubes

We can identify clusters of “irrelevent” variables by circling adjacent
subcubes of 1s. A subcube is just a lower dimensional cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes

(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Three 2x1 subcubes Three 2x2 subcubes

Lecture 2 276.111 Fall 2019

Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

We’re done!

AB
00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

Y A C B C A B

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Z B D B C A C

Lecture 2 286.111 Fall 2019

Two-Level Boolean Minimization
Two-level Boolean minimization is used to find a sum-of-products
representation for a multiple-output Boolean function that is optimum
according to a given cost function. The typical cost functions used are
the number of product terms in a two-level realization, the number of
literals, or a combination of both. The two steps in two-level Boolean
minimization are:

•Generation of the set of prime product-terms for a given function.

•Selection of a minimum set of prime terms to implement the function.

We will briefly describe the Quine-McCluskey method which was the
first algorithmic method proposed for two-level minimization and which
follows the two steps outlined above. State-of-the-art logic minimization
algorithms are all based on the Quine-McCluskey method and also
follow the two steps above.

Lecture 2 296.111 Fall 2019

Prime Term Generation
Start by expressing your Boolean function using 0-terms
(product terms with no don’t care care entries). For
compactness the table for example 4-input, 1-output
function F(w,x,y,z) shown to the right includes only entries
where the output of the function is 1 and we’ve labeled
each entry with it’s decimal equivalent.

W X Y Z label
0 0 0 0 0
0 1 0 1 5
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 1 0 14
1 1 1 1 15

Look for pairs of 0-terms that differ in only one bit position and merge them in
a 1-term (i.e., a term that has exactly one ‘–’ entry). Next 1-terms are
examined in pairs to see if the can be merged into 2-terms, etc. Mark k-terms
that get merged into (k+1) terms so we can discard them later.

0, 8 -000
5, 7 01-1
7,15 -111
8, 9 100-
8,10 10-0
9,11 10-1

10,11 101-
10,14 1-10
11,15 1-11
14,15 111-

1-terms: 8, 9,10,11 10--
10,11,14,15 1-1-

2-terms:

3-terms: none!

Label unmerged terms:
these terms are prime!

[A]
[B]
[C]

[D]
[E]

Example due to
Srini Devadas

Lecture 2 306.111 Fall 2019

F = f(W,X,Y,Z)

Prime Term Table

An “X” in the prime term table in row R and column K signifies that the 0-term
corresponding to row R is contained by the prime corresponding to column K.

A B C D E
0000 X
0101 . X . . .
0111 . X X . .
1000 X . . X .
1001 . . . X .
1010 . . . X X
1011 . . . X X
1110 X
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding 0-term is not contained in any other prime.

A is essential -000
B is essential 01-1

D is essential 10--

E is essential 1-1-

In this example the essential primes “cover” all the 0-terms.

Goal: select the minimum
set of primes (columns)
such that there is at least
one “X” in every row. This
is the classical minimum
covering problem.

Lecture 2 316.111 Fall 2019

F = f(W,X,Y,Z) = XYZ + WXZ + WX + WY

Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

FA

A B

Co Ci

S

The sum S doesn’t have a simple sum-of-products implementation
even though it can be implemented using only two 2-input XOR
gates.

Full Adder

C/AB 00 01 11 10

0 0 0 1 0

1 0 1 1 1

C/AB 00 01 11 10

0 0 1 0 1

1 1 0 1 0

S

CO

S A B C A B C A B C A B C A BCi

CO A C B C A B

Lecture 2 326.111 Fall 2019

Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B

C

A
Y

A

B

C

0

1

schematic Gate
symbol

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree

Lecture 2 336.111 Fall 2019

Systematic Implementation of
Combinational Logic

Consider implementation of some
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Lecture 2 346.111 Fall 2019

Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this
time let’s use a 4-input mux

Full-Adder
Carry Out Logic

0
1
2
3

A,B

Cout

0
Cin
Cin
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Lecture 2 356.111 Fall 2019

Xilinx Virtex II FPGA

XC2V6000:
• 957 pins, 684 IOBs
• CLB array: 88 cols x 96/col = 8448 CLBs
• 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
• 18x18 multipliers = 6 cols x 24/col = 144 multipliers

Figures from Xilinx Virtex II datasheetLecture 2 366.111 Fall 2019

Virtex II CLB

Figures from Xilinx Virtex II datasheet

16 bits of RAM which can be configured as a 16x1
single- or dual-port RAM, a 16-bit shift register, or a
16-location lookup table

Lecture 2 376.111 Fall 2019

Virtex II Slice Schematic

Figures from Xilinx Virtex II datasheet

Lecture 2 386.111 Fall 2019

Virtex II Sum-of-products

Figures from Xilinx Virtex II datasheet

Lecture 2 396.111 Fall 2019 Lecture 2 6.111 Fall 2019 40

The Need for HDLs

A specification is an engineering contract that lists all the goals for a
project:

• goals include area, power, throughput, latency, functionality, test
coverage, costs (NREs and piece costs), … Helps you figure out
when you’re done and how to make engineering tradeoffs. Later on,
goals help remind everyone (especially management) what was
agreed to at the outset!

• top-down design: partition the project into modules with well-defined
interfaces so that each module can be worked on by a separate team.
Gives the SW types a head start too! (Hardware/software codesign is
currently all the rage…)

• Example – a well defined Instruction Set Architecture (ISA)
can last for generations …

Lecture 2 6.111 Fall 2019 41

The Need for HDLs (cont’d.)

A behavioral model serves as an executable functional
specification that documents the exact behavior of all the
individual modules and their interfaces. Since one can run tests,
this model can be refined and finally verified through simulation.

We need a way to talk about what hardware should do without
actually designing the hardware itself, i.e., we need to separate
behavior from implementation. We need a

Hardware Description Language

If we were then able to synthesize an implementation directly from
the behavioral model, we’d be in good shape!

Lecture 2 6.111 Fall 2019 42

Using an HDL description
So, we have an executable functional specification that

• documents exact behavior of all the modules and their
interfaces

• can be tested & refined until it does what we want

An HDL description is the first step in a mostly automated process
to build an implementation directly from the behavioral model

Logic Synthesis Place & routeHDL
description

Gate
netlist

CPLD
FPGA

Stdcell ASIC• HDL logic
• map to target library (LUTs)
• optimize speed, area

• create floor plan blocks
• place cells in block
• route interconnect
• optimize (iterate!)

Physical designFunctional design

Lecture 2 6.111 Fall 2019 43

A Tale of Two HDLs
VHDL Verilog

ADA-like verbose syntax, lots of
redundancy (which can be good!)

C-like concise syntax

Extensible types and simulation
engine. Logic representations are
not built in and have evolved with
time (IEEE-1164).

Built-in types and logic
representations. Oddly, this led to
slightly incompatible simulators
from different vendors.

Design is composed of entities
each of which can have multiple
architectures. A configuration
chooses what architecture is used
for a given instance of an entity.

Design is composed of modules.

Behavioral, dataflow and structural
modeling. Synthesizable subset...

Behavioral, dataflow and structural
modeling. Synthesizable subset...

Harder to learn and use, not
technology-specific, DoD mandate

Easy to learn and use, fast
simulation, good for hardware
design

Lecture 2 6.111 Fall 2019 44

Analog Input or digital I/O

16 Switches, 7 segment LED

PWM Audio Out

Microphone

(4) 8 User I/O

12 bit VGA

ADI
temperature
sensor

Ethernet

USB HID

5 Pushbuttoms

ADX362 3-axis accelerometer

Nexys4 Schematic

Lecture 2 6.111 Fall 2019 45 Lecture 2 6.111 Fall 2019 46

XDC to Hardware
Mapping

set_property -dict { PACKAGE_PIN R12 IOSTANDARD LVCMOS33 }
[get_ports { led16_b }]; #IO_L5P_T0_D06_14 Sch=led16_b

Lecture 2 6.111 Fall 2019 47

Constraint File

• Text file (.XDC) containing the mapping from a device independent
HDL circuit net to the physical I/O pin. This allows Verilog (HDL) to
be device independent.

– led16_b is physically tied to IC package R pin 12
– Voltage spec based on low voltage CMOS 3.3
– Schematic name is led16_b #IO_L5P_T0_D06_14

• All signals defined in XDC but commented out.

set_property -dict { PACKAGE_PIN R12 IOSTANDARD LVCMOS33 }
[get_ports { led16_b }]; #IO_L5P_T0_D06_14 Sch=led16_b

Lecture 2 6.111 Fall 2019 48

When using a tri-state bus, we’ll need to represent the values that can
appear on bus and need to use Verilog with a 4-valued logic:

Value Meaning
0 Logic zero, “low”
1 Logic one, “high”

Z or ? High impedance (tri-state buses)
X Unknown value (simulation)

“X” is used by simulators when a wire hasn’t been initialized to a known value
or when the predicted value is an illegitimate logic value (e.g., due to
contention on a tri-state bus).

SystemVerilog logic values

Since we’re describing hardware, we’ll need to represent the values
that can appear on wires. SystemVerilog uses a 4-valued logic:

Lecture 2 6.111 Fall 2019 49

Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, unspecified width
‘d123 // ‘d = decimal radix
‘h7B // ‘h = hex radix
‘o173 // ‘o = octal radix
‘b111_1011 // ‘b = binary radix, “_” are ignored
‘hxx // can include X, Z or ? in non-decimal constants
16’d5 // 16-bit constant ‘b0000_0000_0000_0101
11’h1X? // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s on
left if need be (if high-order bit is X or Z, the extended bits will be X or
Z too). You can specify a signed constant as follows:

8’shFF // 8-bit twos-complement representation of -1

To be absolutely clear in your intent it’s usually best to explicitly
specify the width and radix.

Lecture 2 6.111 Fall 2019 50

Logic (SystemVerilog) Wires (Verilog)
We have to provide declarations* for all our named wires (aka “nets”).
We can create buses – indexed collections of wires – by specifying
the allowable range of indices in the declaration:

logic a,b,z; // three 1-bit wires
logic [31:0] memdata; // a 32-bit bus
logic [7:0] b1,b2,b3,b4; // four 8-bit buses
logic [W-1:0] input; // parameterized bus

Note that [0:7] and [7:0] are both legitimate but it pays to develop a
convention and stick with it. Common usage is [MSB:LSB] where
MSB > LSB; usually LSB is 0. Note that we can use an expression in
our index declaration but the expression’s value must be able to be
determined at compile time. We can also build unnamed buses via
concatenation:

{b1,b2,b3,b4} // 32-bit bus, b1 is [31:24], b2 is [23:16], …
{4{b1[3:0]},16’h0000} // 32-bit bus, 4 copies of b1[3:0], 16 0’s

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get you into
trouble. Specify “`default_nettype none” at the top of your source files to avoid this bogus
behavior.

Verilog Syntax
• Bit selected allowed on a wire but not sum

 logic [2:0] sum;
sum = sw[1:0] + sw[3:2];
assign led_r = sum[1];

assign led_r = (sw[1:0] + sw[3:2])[2];

• Assign not allowed in always block

Lecture 2 6.111 Fall 2019 51

Gesture Controlled Drone
Fall 2014

• Track hands with a camera and
determine x,y coordinates

• Based on movement of the
coordinates, recognize gestures.

• Generate real time digital signals
and convert to analog format for
transmission to drone – controlling
pitch, roll, hover

• Innovation: using hand motion and
recognition of gestures to control
flight

