
Intro to Verilog
• Circuits in the real world
• Verilog

-- structural: modules, instances
-- dataflow: continuous assignment
-- sequential behavior: always blocks
-- other useful features

6.111 Fall 2018 1Lecture 3

Reminder: Lab 1 Checkoff Thu (A-M), Fr (N-Z)

Handouts
• lecture slides

New Horizon Probe

• Transmitter power 12 watts
• Transit time to earth 4.5 hours from

Pluto
• Received signal strength

~ 10-19 watts!
• Reception possible because of

interleaving, forward error
correction and super low noise
amplifiers.

6.101 Spring 2018 Lecture 13 2

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/New_Horizons_Transparent.png/257px-
New_Horizons_Transparent.png

Wires Theory vs Reality

6.111 Fall 2018 Lecture 3 3

Wires have inductance and
resistance

noise during transitions

Voltage drop across wires

LC ringing after transitions

30-50mv voltage drop in chip

power
supply
noise

Vih > 2.0

Vil < 0.8

Bypass (Decoupling) Capacitors

6.111 Fall 2018 Lecture 3 4

Bypass capacitor
0.1uf typical

• Provides additional
filtering from main power
supply

• Used as local energy
source – provides peak
current during transitions

• Provided decoupling of
noise spikes during
transitions

• Placed as close to the IC
as possible.

• Use small capacitors for
high frequency response.

• Use large capacitors to
localize bulk energy
storage

Electrolytic
Capacitor 10uf

Through hole PCB (ancient) shown for clarity.

Nexys4 Power System

6.111 Fall 2018 Lecture 1 5

ADP: Analog Devices

Input Output Design

6.111 Fall 2018 Lecture 1 6

Floating input is undefined Limit output current for LED

Nexys I/O PMOD Limitations

6.111 Fall 2018 Lecture 1 7

• Max current: 1 amp/PMOD,
constrained by

– USB source (~0.5-1amp)
– External power supply
– 3.3V regulator (3 amp)

• Max frequency: <50Mhz

6.111 Fall 2018 Lecture 1 8

PMOD Port Protection
R: Short circuit protection D: Over voltage protection

6.111 Fall 2018 Lecture 1 9

RC Equation

dt
dVC c

c
c V

dt
dVRC

Vs = 5 V

Switch is closed t<0

Switch opens t>0

Vs = VR + VC

Vs = iR R+ Vc iR =

Vs =

R

+
Vc
-

Vs = 5 V

RC
t

sc eVV 1

RC
t

c eV 15

Is RC in units of time?

Diodes

• Reversed diodes have capacitances ~ 200pf
• Reversed biased diodes are used as varactors

aka varicap diode, tuning diode, variable
capacitor diode ..

• Depletion layer (spacing) increases with
reversed voltage; capacitance decreases

= 0.37

• R=200Ω, C=200pf RC=20ns Max F <<
50Mhz

6.111 Fall 2018 Lecture 1 10

RC
t

c eV 15

RS-232 - Serial Data Transfer
• Standard developed in 1970
• Clear definition of terminal and data communications (modem)
• Data is sent over a single wire one bit at a time at a fixed data rate.
• Data rates can range from 300 bits per second (bps) to

megabits/second.
• First modem was 300 bps.

6.111 Fall 2018 Lecture 1 11

receive
data

transmit
data

ground

receive
data

transmit
data

ground

Data Terminal Data
Communications

Straight through cable

Is RX input or output?

6.111 Fall 2018 Lecture 1 12

receive
data

transmit
data

ground

receive
data

transmit
data

ground

Data Terminal

Crossover “null modem”
cable

Data Terminal

RX is input

Synthesis – Really?

led[4]: Logical NAND of sw[1] and sw[2]

assign led[4] = !(sw[1] & sw[2];

Lecture 1 13

6.111 Fall 2018 Lecture 1 14

When using a tri-state bus, we’ll need to represent the values that can
appear on bus and need to use Verilog with a 4-valued logic:

Value Meaning
0 Logic zero, “low”
1 Logic one, “high”

Z or ? High impedance (tri-state buses)
X Unknown value (simulation)

“X” is used by simulators when a wire hasn’t been initialized to a known value
or when the predicted value is an illegitimate logic value (e.g., due to
contention on a tri-state bus).

SystemVerilog logic values

Since we’re describing hardware, we’ll need to represent the values
that can appear on wires. SystemVerilog uses a 4-valued logic:

Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, unspecified width
‘d123 // ‘d = decimal radix
‘h7B // ‘h = hex radix
‘o173 // ‘o = octal radix
‘b111_1011 // ‘b = binary radix, “_” are ignored
‘hxx // can include X, Z or ? in non-decimal constants
16’d5 // 16-bit constant ‘b0000_0000_0000_0101
11’h1X? // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s on
left if need be (if high-order bit is X or Z, the extended bits will be X or
Z too). You can specify a signed constant as follows:

8’shFF // 8-bit twos-complement representation of -1

To be absolutely clear in your intent it’s usually best to explicitly
specify the width and radix.

6.111 Fall 2018 15Lecture 3

Basic building block: modules

// 2-to-1 multiplexer with dual-polarity outputs
module mux2(input a,b,sel, output z,zbar);
wire selbar,z1,z2; // wires internal to the module
// order doesn’t matter – all statements are
// executed concurrently!
not i1(selbar,sel); // inverter, name is “i1”
and a1(z1,a,selbar); // port order is (out,in1,in2,…)
and a2(z2,b,sel);
or o1(z,z1,z2);
not i2(zbar,z);

endmodule

In Verilog we design modules, one of which will be identified as our
top-level module. Modules usually have named, directional ports
(specified as input, output or inout) which are used to
communicate with the module.

In this example the module’s behavior is specified using Verilog’s built-in
Boolean modules: not, buf, and, nand, or, nor, xor, xnor. Just
say no! We want to specify behavior, not implementation!

Don’t forget this “;”

6.111 Fall 2018 16Lecture 3

z

zbar

sel

b

a

z2

z1selbar

Continuous assignments

// 2-to-1 multiplexer with dual-polarity outputs
module mux2(input a,b,sel, output z,zbar);
// again order doesn’t matter (concurrent execution!)
// syntax is “assign LHS = RHS” where LHS is a wire/bus
// and RHS is an expression
assign z = sel ? b : a;
assign zbar = ~z;

endmodule

If we want to specify a behavior equivalent to combinational logic, use
Verilog’s operators and continuous assignment statements:

Conceptually assign’s are evaluated continuously, so whenever a
value used in the RHS changes, the RHS is re-evaluated and the
value of the wire/bus specified on the LHS is updated.

This type of execution model is called “dataflow” since evaluations are
triggered by data values flowing through the network of wires and
operators.

6.111 Fall 2018 17Lecture 3

Boolean operators
• Bitwise operators perform bit-oriented operations on vectors

• ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
• 4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001

• Reduction operators act on each bit of a single input vector
• &(4’b0101) = 0 & 1 & 0 & 1 = 1’b0

• Logical operators return one-bit (true/false) results
• !(4’b0101) = 1’b0

~a NOT

a & b AND

a | b OR

a ^ b XOR

a ~^ b
a ^~ b

XNOR

Bitwise Logical (checks for z and x)
!a NOT

a && b AND

a || b OR

a == b
a != b

[in]equality
returns x when x
or z in bits. Else
returns 0 or 1

a === b
a !== b

case
[in]equality
returns 0 or 1

based on bit by bit
comparison

&a AND

~&a NAND

|a OR

~|a NOR

^a XOR

~^a
^~a

XNOR

Reduction

Note distinction between ~a and !a
when operating on multi-bit values

6.111 Fall 2018 18Lecture 3

Boolean operators
• ^ is NOT exponentiation (**)
• Logical operator with z and x

• 4'bz0x1 === 4'bz0x1 = 1 4'bz0x1 === 4'bz001 = 0
• Bitwise operator with z and x

• 4'b0001 & 4'b1001 = 0001 4'b1001 & 4'bx001 = x001

~a NOT

a & b AND

a | b OR

a ^ b XOR

a ~^ b
a ^~ b

XNOR

Bitwise Logical
!a NOT

a && b AND

a || b OR

a == b
a != b

[in]equality
returns x when x
or z in bits. Else
returns 0 or 1

a === b
a !== b

case
[in]equality
returns 0 or 1

based on bit by bit
comparison

&a AND

~&a NAND

|a OR

~|a NOR

^a XOR

~^a
^~a

XNOR

Reduction

Note distinction between ~a and !a
when operating on multi-bit values

6.111 Fall 2018 19Lecture 3

Integer Arithmetic

• Verilog’s built-in arithmetic makes a 32-bit adder easy:

• A 32-bit adder with carry-in and carry-out:

module add32
(input[31:0] a, b,
output[31:0] sum);

assign sum = a + b;
endmodule

module add32_carry
(input[31:0] a,b,
input cin,
output[31:0] sum,
output cout);

assign {cout, sum} = a + b + cin;
endmodule

concatenation

6.111 Fall 2018 20Lecture 3

Other operators

a ? b : c If a then b else c
Conditional

-a negate

a + b add

a - b subtract

a * b multiply

a / b divide

a % b modulus

a ** b exponentiate

a << b logical left shift

a >> b logical right shift

a <<< b arithmetic left shift

a >>> b arithmetic right shift

Arithmetic

a > b greater than

a >= b greater than or equal

a < b Less than

a <= b Less than or equal

Relational

6.111 Fall 2018 21Lecture 3

Hierarchy: module instances

// 4-to-1 multiplexer
module mux4(input d0,d1,d2,d3, input [1:0] sel, output z);
wire z1,z2;
// instances must have unique names within current module.
// connections are made using .portname(expression) syntax.
// once again order doesn’t matter…
mux2 m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1)); // not using zbar
mux2 m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2));
mux2 m3(.sel(sel[1]),.a(z1),.b(z2),.z(z));
// could also write “mux2 m3(z1,z2,sel[1],z,)” NOT A GOOD IDEA!

endmodule

Our descriptions are often hierarchical, where a module’s behavior is
specified by a circuit of module instances:

Connections to module’s ports are made using a syntax that specifies both
the port name and the wire(s) that connects to it, so ordering of the ports
doesn’t have to be remembered (“explicit”).

This type of hierarchical behavioral model is called “structural” since we’re
building up a structure of instances connected by wires. We often mix
dataflow and structural modeling when describing a module’s behavior.

6.111 Fall 2018 22Lecture 3

Parameterized modules
// 2-to-1 multiplexer, W-bit data
module mux2 #(parameter W=1) // data width, default 1 bit

(input [W-1:0] a,b,
input sel,
output [W-1:0] z);

assign z = sel ? b : a;
assign zbar = ~z;

endmodule

// 4-to-1 multiplexer, W-bit data
module mux4 #(parameter W=1) // data width, default 1 bit

(input [W-1:0] d0,d1,d2,d3,
input [1:0] sel,
output [W-1:0] z);

wire [W-1:0] z1,z2;

mux2 #(.W(W)) m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1));
mux2 #(.W(W)) m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2));
mux2 #(.W(W)) m3(.sel(sel[1]),.a(z1),.b(z2),.z(z));

endmodule

could be an expression evaluable at compile time;
if parameter not specified, default value is used

6.111 Fall 2018 23Lecture 3

Sequential behaviors

// 4-to-1 multiplexer
module mux4(input a,b,c,d, input [1:0] sel, output reg z,zbar);
always @(*) begin
if (sel == 2’b00) z = a;
else if (sel == 2’b01) z = b;
else if (sel == 2’b10) z = c;
else if (sel == 2’b11) z = d;
else z = 1’bx; // when sel is X or Z
// statement order matters inside always blocks
// so the following assignment happens *after* the
// if statement has been evaluated
zbar = ~z;

end
endmodule

There are times when we’d like to use sequential semantics and more
powerful control structures – these are available inside sequential
always blocks:

always @(*) blocks are evaluated whenever any value used inside
changes. Equivalently we could have written
always @(a, b, c, d, sel) begin … end // careful, prone to error!

6.111 Fall 2018 24Lecture 3

Historical Usage: reg vs wire
Verilog (not SystemVerilog in this case) uses wire declarations when
naming nets (ports are declared as wires by default).

However nets appearing on the LHS of assignment statements inside
of always blocks must be declared as type reg.

I don’t know why Verilog has this rule! I think it’s because
traditionally always blocks were used for sequential logic (the
topic of next lecture) which led to the synthesis of hardware
registers instead of simply wires. Always blocks typically include
flip-flops (storage), hence the concept of always_ff in
SystemVerilog. So this seemingly unnecessary rule really supports
historical usage – the declaration would help the reader
distinguish registered values from combinational values.

SystemVerilog logic keyword replaces reg and wire.

6.111 Fall 2018 25Lecture 3

Case statements

// 4-to-1 multiplexer
module mux4(input a,b,c,d, input [1:0] sel, output reg z,zbar);
always @(*) begin
case (sel)
2’b00: z = a;
2’b01: z = b;
2’b10: z = c;
2’b11: z = d;
default: z = 1’bx; // in case sel is X or Z

endcase
zbar = ~z;

end
endmodule

Chains of if-then-else statements aren’t the best way to indicate the
intent to provide an alternative action for every possible control value.
Instead use case:

case looks for an exact bit-by-bit match of the value of the case
expression (e.g., sel) against each case item, working through the
items in the specified order. casex/casez statements treat X/Z values
in the selectors as don’t cares when doing the matching that
determines which clause will be executed.

6.111 Fall 2018 26Lecture 3

Unintentional creation of state

// 3-to-1 multiplexer ????
module mux3(input a,b,c, input [1:0] sel, output reg z);
always @(*) begin
case (sel)
2’b00: z = a;
2’b01: z = b;
2’b10: z = c;
// if sel is 2’b11, no assignment to z!!??

endcase
end

endmodule

Suppose there are multiple execution paths inside an always block,
i.e., it contains if or case statements, and that on some paths a net
is assigned and on others it isn’t.

So sometimes z changes and sometimes it doesn’t (and hence keeps
its old value). That means the synthesized hardware has to have a
way of remembering the state of z (i.e., it’s old value) since it’s no
longer just a combinational function of sel, a, b, and c. Not what was
intended here. More on this in next lecture.

6.111 Fall 2018 27Lecture 3

00

sel

z01

10

a

b

c

2

D Q

G

sel[1]
sel[0]

Keeping logic combinational

// 3-to-1 multiplexer
module mux3(input a,b,c, input [1:0] sel, output reg z);
always @ (*) begin
z = 1’bx; // a second assignment may happen below
case (sel)
2’b00: z = a;
2’b01: z = b;
2’b10: z = c;
default: z = 1’bx;

endcase
end

endmodule

To avoid the unintentional creation of state, ensure that each variable
that’s assigned in an always block always gets assigned a new value
at least once on every possible execution path.

It’s good practice when writing combinational always blocks to
provide a default: clause for each case statement and an else
clause for each if statement.

6.111 Fall 2018 28Lecture 3

Use one or
the other

Other useful Verilog features
• Additional control structures: for, while, repeat, forever
• Procedure-like constructs: functions, tasks
• One-time-only initialization: initial blocks
• Compile-time computations: generate, genvar
• System tasks to help write simulation test jigs

– Stop the simulation: $finish(…)
– Print out text, values: $display(…)
– Initialize memory from a file: $readmemh(…), $readmemb(…)
– Capture simulation values: $dumpfile(…), $dumpvars(…)
– Explicit time delays (simulation only!!!!) : #nnn

• Compiler directives
– Macro definitions: `define
– Conditional compilation: `ifdef, …
– Control simulation time units: `timescale
– No implicit net declarations: `default_nettype none

6.111 Fall 2018 29Lecture 3

6.111 Fall 2018 Lecture 1 30

For Loops, Repeat Loops
in Simulation

integer i; // index must be declared as integer
integer irepeat;

// this will just wait 10ns, repeated 32x.
// simulation only! Cannot implement #10 in hardware!

irepeat =0;
repeat(32) begin
#10;
irepeat = irepeat + 1;
end

// this will wait #10ns before incrementing the for loop
for (i=0; i<16; i=i+1) begin

#10; // wait #10 before increment.
// @(posedge clk);
// add to index on posedge

end

// other loops: forever, while

Defining Processor ALU in 5 mins
• Modularity is essential to the success of large designs
• High-level primitives enable direct synthesis of behavioral descriptions

(functions such as additions, subtractions, shifts (<< and >>), etc.

Example: A 32-bit ALU

F2 F1 F0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 X

Function

A + B
A + 1
A - B
A - 1
A * B

Function Table

6.111 Fall 2018 31Lecture 3

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Module Definitions
2-to-1 MUX 3-to-1 MUX

32-bit Adder

32-bit Subtracter

16-bit Multiplier

module mux32two
(input [31:0] i0,i1,
input sel,
output [31:0] out);

assign out = sel ? i1 : i0;
endmodule

module mux32three
(input [31:0] i0,i1,i2,
input [1:0] sel,
output reg [31:0] out);

always @ (i0 or i1 or i2 or sel)
begin
case (sel)
2’b00: out = i0;
2’b01: out = i1;
2’b10: out = i2;
default: out = 32’bx;

endcase
end
endmodule

module add32
(input [31:0] i0,i1,
output [31:0] sum);

assign sum = i0 + i1;
endmodule

module sub32
(input [31:0] i0,i1,
output [31:0] diff);

assign diff = i0 - i1;
endmodule

module mul16
(input [15:0] i0,i1,
output [31:0] prod);

// this is a magnitude multiplier
// signed arithmetic later
assign prod = i0 * i1;

endmodule

6.111 Fall 2018 32Lecture 3

Top-Level ALU Declaration
• Given submodules:

• Declaration of the ALU Module:

module mux32two(i0,i1,sel,out);

module mux32three(i0,i1,i2,sel,out);

module add32(i0,i1,sum);

module sub32(i0,i1,diff);

module mul16(i0,i1,prod);

A[31:0] B[31:0]

+ - *

0 1

32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

module
names

(unique)
instance
names

corresponding
wires/regs in
module alu

intermediate output nodes

alu

6.111 Fall 2018 33Lecture 3

module alu
(input [31:0] a, b,
input [2:0] f,
output [31:0] r);

wire [31:0] submux_out;
wire [31:0] add_out, sub_out, mul_out;

mux32two sub_mux(b, 32'd1, f[0], submux_out);
add32 our_adder(a, addmux_out, add_out);
sub32 our_subtracter(a, submux_out, sub_out);
mul16 our_multiplier(a[15:0], b[15:0], mul_out);
mux32three output_mux(add_out, sub_out, mul_out, f[2:1], r);

endmodule

Use Explicit Port Declarations

6.111 Fall 2018 Lecture 1 34

mux32two adder_mux(b, 32'd1, f[0], addmux_out);

mux32two adder_mux(,i0(b), .i1(32'd1),
.sel(f[0]), .out(addmux_out));

Order of the ports and bit width matters!

Identify input and output in port names

xvga xvga1(.vclock_in(clock_65mhz),
.hcount_out(hcount),.vcount_out(vcount),
.hsync_out(hsync),.vsync_out(vsync),
.blank_out(blank));

module xvga(input vclock_in,
output reg [10:0] hcount_out,
output reg [9:0] vcount_out,
output reg vsync_out, hsync_out,
output reg blank_out);

6.111 Fall 2018 Lecture 1 35

6.111 Fall 2019 Lecture 3 36

Checkoff Reminder

• May checkoff at any time prior to checkoff date.
• On checkoff date, checkoff will staff’s be main priority
• Two checkoff dates: last name A-M (Thu), N-Z (Fri)
• Thu checkoff starts at 5pm, Fri 1pm
• Schedule time on google doc

36

