Lecture 4

Sequential Logic
Pset 3 due Thursday
Lab 2 part 1 due Thursday
Lab 2 part 2 due Next Tuesday

Lab 3 out thisThursday-Now!

9/19/2019 6.111 Fall 2019

Something We Can Build

What if you were given the following design specification:

When the button is pushed, the
Button light should be on. Light
When the button is unpushed, [>
the light should be off

assign 1light = button;

*Done...This is all we need in life.

No it isn’t

9/19/2019 6.111 Fall 2019

Levels of Complexity in
Computation

Automata theory

Combinational logic

Finite-state machine

Pushdown automaton

_ Turing Machine)

Sipser’s Book

https://en org/wiki/Automata_theory

9/19/2019 6.111 Fall 2019

Something We Cannot Build (Yet)

What if you were given the following design specification:

When the button gets pushed down:
1) Turn on the light if it is off

Button 2) Turn off the light if it is on Light
— ——
The light should change

within a second
of the button press

What makes this circuit so different
from those we’ve discussed before?

1. “State” —i.e. the circuit has memory (become “state-ful”)
2. The output was changed by an input “event” (pushing a button)
rather than an input “value”

9/19/2019 6.111 Fall 2019

Digital State

—>
Memory Next
Device Current State State
—P|LoAD Combinational
Input > Logic
Output

Plan: Build a Sequential Circuit with stored digital STATE

e Memory stores CURRENT state

e Combinational Logic computes:

and current state, circuit is called a
Mealy machine. If Output depends
only on the current state, circuit is
called a Moore machine.

 NEXT state (from input, current state) SW”Q” Output depends on input
e QUTPUT values (from input, current state)

e State changes on LOAD control input

9/19/2019 6.111 Fall 2019

How is Digital State
Created?

...0Or How to Make Electronics Remember Previous Values

9/19/2019 6.111 Fall 2019

From the Ground Up:

* MOSFETs are electrically controlled switches:
* Electricity can “gate” other electricity

VGS = LOW VGS = HIGH
D D D
G
P-Channel closed
open
S S |
S
D
D) b
N-Channel open closed
: I
S S
9/19/2019 6.111 Fall 2019 7

NAND Gate

* Assemble higher functionality from the transistors

vdd
Vcc
A—4 544 A —
QOut B =
F
A
a { —l A B Y
_| B_I 0 0 1
b J 0 1 1
EL . 1 0 1
= “ 1 1 0
NMOS CMOS
NAND gate NAND gate

(4 transistors)

9/19/2019 6.111 Fall 2019

Fu” Adder Out Of NAN DS Made completely of NAND gates

and lets you add two one bit
numbers plus a carry

8 bit Adder from Full Adders

Link together eight Full Adders to get an 8 bit adder... and
so on (now you can add two numbers each up to 255)

Le
Lq
£
zZe
T®
™
o2
09

e
e
m—e
e
=
]
e
?

: FA nE‘A FA . R
i § i § g § §

P i
=g s
s Jm—|us <R
25¢] wms 11 4
18 ¢ s 4
Ras iy

'
catryCl-l%

(288 transistors)
http://visiinnovator.blogspot.com/2015/02/full-adder-using-nand-gate-structural.html (36 tranSiStorS)
https://www.researchgate.net/figure/Eight-bit-Ripple-Carry-adder fig2 283037309
9/19/2019 6.111 Fall 2019 9 9/19/2019 6.111 Fall 2019 10
The D Latch
And So On...
¢ Made of gates (which are made of D
* We can keep wiring up larger and more complex transistors, which are made of Q
digital systems which: sand(currently))
* Given a set of inputs, provide a given set of outputs * Something different though...what is 5
. . . it?
¢ Base outputs completely on layers of combinational logic It: Eo—
* Will always respond the same way in time for a given input . —
ysresp Y 8 P “latch” means it Q Q

* But there are other ways...

9/19/2019 6.111 Fall 2019 11

latch latch
latch latch
0 L
L 0

value was already
present...basically:
“Previous Q”

E
holds whatever 0
0
L
L

—|o|—~|o|D

E = “Enable” D = “Data” Q = not sure,
https://www. ircuits.com/textbook/digital/chpt-10/d-latch, but it iS the

output

9/19/2019 6.111 Fall 2019 12

The D I_atCh PrOV|deS Memory! The D Fllp_Flop (Reg) Two D-Latches in Series driven

with opposite enable signals

D
Q
1. SetE=1 3 Data propagates through first D Latch
2. Setyour D value = D
3. SetE=0 Elb] o q - Q
. nanle
4, Whatgver£fwas is olo! latch latch
stored at Q forever) Q
0|L| latch latch Q
until E is 1 again!
L]0 0 L CLK LSW-DO‘ ‘D" IEnabled
5. Can we do L1 L 0
better/different? @ notsur
E=“Enable” D= "Data” 1~ it‘i’s ;‘::' CLK LINE is LOW
output

9/19/2019 6.111 Fall 2019 13 9/19/2019 6.111 Fall 2019 14

The D Fllp-FlOp (Reg) Two D-Latches in Series driven A New BUlldlng BlOCk: the D Fllp—Flop

with opposite enable signals

* The edge-triggered D register: D
on the rising edge of CLK, the
value of D is saved in the A\
D Data propagates through to output register and then appears
shortly afterward on Q. Lk

D QfF— Q

IEnabled

CLK ;b |_¢> L net
cLk C-DO“D’ Enabled : '

HIGH Q |) I
Data at Q after clk rises : :
D

is data at D slightly

before clk rises Example: 74LS74 internals

CLK LINE rises to HIGH When you simplify some common/redundant logic

between the two stages, you get to about ~25 transistors
9/19/2019 6.111 Fall 2019 15 9/19/2019 6.111 Fall 2019 16

Registers, Latches, and Flip-Flops
* The terminology is a mess for historical reasons and just people in
general, including myself. Here’s one interpretation:
* A “register” is something that holds a value. Flip-flops and Latches
are registers

* Further confusing the situation, people, including myself, often
use “register” or “reg” to just refeursto flip—flops

e a lot
D Flip-Flop D Latch
Edge-Triggered Sample-and-Hold Device [pvel-Triggered Sample-and-Hold Device
D—D Ql— Q p———p al— a
/\ f— E
CLK “store D when clk rises” “store D when E is high”

9/19/2019 6.111 Fall 2019 17

Usage

...Or what does this let us do now?

9/19/2019 6.111 Fall 2019

18

D Flip-Flop Registers Give Us A Few
Critical Capabilities

* \WWe can store values for later use

* We can sample values at precise times
* Arising edge is as close to a delta-function like event as
we can get

* We can design in stages:
* Allow us to non-destructively limit signal propagation

9/19/2019 6.111 Fall 2019 19

Remember about Delays in Logic

¢ Every combinational circuit has delays regarding how slowly (or

quickly) its outputs change in response to inputs, and this varies

based on design/complexity
* t4 minimum time input takes to start to change output
* t,y maximum time input takes to finish changing output

>

tg=1ns _l Input

Logic 1
(NOT gate)

Input Logic 3
(XOR gate)
Logic 2
(NOT gate)
tpg=2 ns «

Glikch
Temporary solution based on differential delays ===~

v

9/19/2019 6.111 Fall 2019

20

Remember about Delays in Logic

* Registers let us isolate/limit signal propagation and
synchronize stages

t,q is propagation delay (how long
input takes to show up at output)

toe=1ns

Edge-triggered
Dregl

Edge-triggered

Logic 1

(NOT gate) Dreg3
Input Logic 3
P (XOR gate) /\ —» OuT
Logic 2 t =1ns
pd
(NOT gate) Edge-triggered
Dreg2
CLK
CLK is a synchronization signal
9/19/2019 6.111 Fall 2019 21

Remember about Delays in Logic

* Registers let us isolate/limit signal propagation and
synchronize stages 1

_I Inpiut

—&

Previous page: Logic 1 I \

Logic 2

Dreg2 i)intermediate glitch
. . Logi

Intermediate glitches ogic3 : :

are minimized and

. Dreg3 : 4

suppressed in output
'Y
H - »
time

9/19/2019 6.111 Fall 2019 22

Design Complex Logic In Stages!

reg2

P> P> reg4
>
CLK \/

* D flip-flops regulate signal propagation!

logic 5
logic 1 D Q logic 2 D Q
3 " s

* Design complex logic systems in stages

* Worry only about affects of delays (t,4 and t.4) and
glitches within a given stage, rather than how they
all interplay!

9/19/2019 6.111 Fall 2019 23

. o . =un etermined state
D-Register Timing 1 reerminee

]
p—bp o —q Q :
X
CLK — :' H
CLK)
! ! !
D___ X ! X
IMPORTANT: : = ;

ZtSETUP ZtHOLD
top: maximum propagation delay, @posedge CLK D —»Q
Maximum time it takes for Q to change after rising edge of CLK
tep: minimum contamination delay, @posedge CLK D —-Q
Minimum time it takes for Q to start to change after rising edge of CLK
teeryp: S€tup time

How long D must be stable before the rising edge of CLK
tyop: hold time New timing attributes

How long D must be stable after the rising edge of CLK for registers

9/19/2019 6.111 Fall 2019 24

D

From
somewhere

CLK

sigl

sig2

Register Timing 2

regl . reg 2
sigl sig2
D Q |— | logic » D al— o somewhere

A A
CLK I T

o

7

: =determined state

% =undetermined state

VN tCLK
> tPD,regl
tep regr®” >t
CD,regl P SETUP,reg2 »
N N
N N
* 'tPD,Iogic
Q
ZtHOLD,regZ « N
tCD,Iogiv: gl N
- 14
time
9/19/2019 6.111 Fall 2019 25

reg 1 . reg 2

D Register Timing 2“1 ={=d=p o

AN AN
—— =determined state
t
V'S CLK Q
A i & =undetermined state
etk i tPD,regl
Lo regi™™ ZtseTupreg2
. N
sigl §
Ml >tPD,Iogic
sig2 2tHOLD,regz [« & N
tCD,Iogic g ;
time
t +t +t <t
Two Requirements/ PD,regl PD,logic © “SETUP,reg2 CLK
Conclusions:
tep,reg1 t Tep logic 2 tHoLD,reg2
9/19/2019 6.111 Fall 2019 26

D

Register Timing 2

We may encounter this in 6.111! If
Two Requirements/ we try to make our combinational

Conclusions:

logic tooooo complex and we won’t

satisfying timing. How do we fix?

Two options:

tpp,reg1 * Tep logic T tseTupreg2 < toik

If you violate this, you have to change

L2

tCD,regl + tCD,|OgIC = tHOLD,regZ A/l/ your design. This is more an issue for
the device engineers...on our FPGAs the

contamination delays (min change

times) are usually longer than HOLD
times, so it is hard for us to run into this
problem in 6.111 (though it is a very

real problem for people laying out
circuits)

9/19/2019 6.111 Fall 2019

27

Design Complex Logic In Stages!

reg2

logic 5

logic 1 D Q logic 2 D Q
i " s
reg4

> |—P>
>
CLK \/

* Design complex logic systems in stages

* Worry only about affects of delays (t,4 and t)
within a given stage, rather than how they all
interplay!

9/19/2019 6.111 Fall 2019 28

Single Clock Synchronous Discipline

* Single Clock signal shared among all clocked devices
(one clock domain)

* Only care about the value of combinational circuits just
before rising edge of clock

* Clock period greater than every combinational delay

* Change saved state after noise-inducing logic changes
have stopped!

Sequential Circuit Timing

_ New
teppeg = 1NS Current
3 top,reg = 3NS State 1 state
ttsnup,neg = ;”5 +> Combinational
HOLD,Reg — <NS Logic
CLOCK K g
tCD,L = ? _>
| I tpp, = 5NS Output
Input P
Questions:

¢ Constraints on t¢, for the logic?
e Minimum clock period?

e Setup, Hold times for Inputs?

This is a simple Finite State Machine ... more in future classes!

Writing Sequential Logic

...0r how do we create sequential logic using SystemVerilog,
overcome the problems of Verilog, and move forward as a
Society

Lab 2 Starter
Code

* Has a little bit of
everything:

assign statements / "o o
Synthesize to combinaﬂ'W' R
always_comb blocks oy

Synthesize to combinational logic
Allow you to be more expressive than

simple assign statements/v FASp—

always_ff blocks
Synthesize to sequential logic

always

* In Verilog the always keyword is a way to specify logic

(sequential, combinational) that is caused by an event
(clock edge, change of state, etc)

* Very similar to an asynchronous callback in Javascript etc:

* “When an event happens, do a certain thing:”

e Historically there was one always word and you would
then specify a sensitivity list:
* always @(x) = “When x changes”
s aways @) = “When anything changes (combinational)”
* always @(posedge k) = “when clk edge rises”
* Etc...

Regs, Wires, Logics, and Life

* Original Verilog had two main datatypes
* wire: Used for continuous assignment (combinational)

* reg: Used to “store” values

* Despite its name being short for “register” a reg
might not actually mean the design will synthesize
to an actual register...It depended on usage in the
Verilog.

* In particular it mostly depended on your sensitivity
list in your always block and if you userIock or non-
blocking assignments (= or <=):

* posedge? Make a flip flop
* values? Make it a combinational or possibly a latch

SystemVerilog

* Drop the wire and reg terminology, just have logic and let
compiler figure out if it becomes an actual register (flip-
flop) or wire from use

* Use is specified more clearly now by replacing
ambiguousness of generic always with specific use cases:

* always_comb: build using combinational logic
* always_ff: build using D-flip-flops (edge-trig sequential)

* What is synthesized is NOT ”inferred” and more clearly
based on user specification! ©

Blocking vs. Nonblocking Assignment

 Within any type of always block you can assign things in
two different ways:

* In both ways, you don’t need the keyword assign

* Blocking assignment (=): evaluation and assignment are

immediate; subsequent statements affected. (ORDER
MATTERS)

e Nonblocking assignment (<=): all assignments deferred

o end of simulation time step after all right-hand sides
‘have geen evaluated (even t?h%se in ﬁme/g active always

blocks) (ORDER DOESN’T MATTER)

Blocking vs. Non-Blocking Assignments

* Verilog supports two types of assignments within always-type blocks, with
subtly different behaviors.
* Blocking assignment (=): evaluation and assignment are immediate

always_comb begin

x=a| b: // 1. evaluate a|b, assign result to x
y=a”~b"c; /f 2 evaluate a*b”c, assign result to y
Z=b & ~c; // 3. evaluate b&(~c), assign result to z

end

* Nonblocking assignment (<=): all assignments deferred to end of

simulation time step after all right-hand sides have been evaluated (even
those in other active always blocks)

always_comb begin

x<=2a | b; // 1. evaluate a|b, but defer assignment to x
y<=a“~b"c; // 2, evaluate a*b~c, but defer assignment to y
z<=b & ~c; // 3. evaluate b&(~c), but defer assignment to z
// 4. end of time step: assign new values to x, y and z

end

Sometimes, as above, both produce the same result. Sometimes, not!

9/19/2019

6.111 Fall 2019 37

Assignment Styles for Sequential Logic

val_in | |
—eed D Q D Q D Q
> > >
clk_in I_ |_

¢ Suppose we want to build the circuit above:

val_out

¢ Will nonblocking and blocking assignments both produce the desired result? (“old”

means value before clock edge, “new” means the value after most recent assignment)

module blockinagl
input val_in, clk_in,
output logic val_out

module nonblocking(
input val_in, clk_in,
output logic val_out
1 13

logic q1, q2; logic q1, q2;
always_ff @(posedge clk_in) begin always_ff @(posedge clk_in) begin
gl <= val_in; ql = val_in;
q2 == ql; // uses old gl qZ2 = ql; £/ uses new gl
val_out <= q2; // uses old g2 val_out = g2; // uses new qZ
end end
endmodule endmodule
9/19/2019 6.111 Fall 2019

38

Use Nonblocking for Sequential Log

module blockingl
input val_in, clk_in,
output logic val_out

module nonblockingl(
input val_in

output logic val_ow

L

] logic ql, q2;
logic q1, q2; always_ff @(posedge clk_in) begin

always_ff @(posedge clk_in) begin
gl == val_in;

=0l // uses old ql

val_out <= g2; // uses old q2

end

endmodule

ql = val_in;
1 /f uses new gl
it = q2; // uses new q2

[+
end
endmodule

“At each rising clock edge, q1 = vin.
After that, q2 = q1.
After that, out = q2.
Therefore out = vin.

“At each rising clock edge, q1, q2, and out

simultaneously receive the old values of
vin, q1, and q2.”

Ll qz

val_in D Q [[out val_in D Q out
ql

> > >
R e O

elk

* Blocking assignments do not reflect the intrinsic behavior of multi-stage
sequential logic

IC

e Guideline: use nonblocking assignments for always_ff blocks (Sequential always

blocks)!!

9/19/2019 6.111 Fall 2019

General Strong Guidelines

* Blocking assignments (=) more cIoseIY align with how

combinational works (use in always_comb

* Non-blocking assignments (<=) more closely align

with how we want to think about how sequential
logic works (use in always_f)

* Avoid mixing blocking and non-block assignments
within one block!
e Something will synthesize, but sometimes simulation will
differ from what gets synthesized (built)

* Really hard to comprehend for our limited human
minds...so debugging is a nightmare

9/19/2019 6.111 Fall 2019

40

Example Uses with Assignments:

Combinatorial

module blobiinput a_in,

sel_in,
output logic val_out);
always_comb begin
if (sel_in) val_out = b_in;
else val_out = a_in;
end

endmodule

Makes:

a_in

b_in

val_out

sel_in

9/19/2019

Sequential

module blob{input a_in,

sel_in,

clk_in,

output logic val_out);
always_ff @(posedge clk_in) begin

a_in 0 ™

b_in

val_out

sel_in

clk_in

6.111 Fall 2019 41

Coding Guidelines

The following helpful guidelines are from this paper. If followed, they ensure your
simulation results will match what they synthesized hardware will do:

http.//www.sunburst-design.com/papers/CummingsSNUG2000S)_NBA.pdf

[N

. When modeling sequential logic, use and always_ff with nonblocking assignments.

N

. When modeling combinational logic with an always block, use always comb with
blocking assignments.

w

. When modeling both sequential and “combinational” logic within the same always
block, use nonblocking assignments.

4. Do not mix blocking and nonblocking assignments in the same always block.

(%]

. Do not make assignments to the same variable from more than one always block (this
should throw errors, but might not if using blocking assignments)

#1 thing we will be checking in your Verilog submissions!

9/19/2019 6.111 Fall 2019 42

The Sensitivity List in always_ff

* The use of posedge and negedge Specifies edge you care about

¢ Can have combinational sensitivity lists, but must all be edge-based

D-Register with synchronous clear

module dff_sync_clear(

input d_in, clearb_in, clk_in
output logic q_out

i

always @{posedge clk_in)
begin
if (!clearb_in) g_out <= 1'b@;
else g out <= d_in;
end
endmodule

aivays block entered only at each positive clock
edge

9/19/2019

D-Register with asynchronous clear

module dff_sync_clear(
input d_in, clearb_in, clk_in
output logic q_out

always @(negedge clearb_in or posedge clk_in)

begin
if (!clearb_in) gq_out <= 1'b@;
else g_out <= d_in;

end

endmodule

ahvays block entered immediately when (active-low)
clearb_in iS asserted

6.111 Fall 2019 43

Example: Simple Counter

* Can still specify combinational logic when making sequential
logic in aiways_gf blocks!

// 4-bit counter with enable and synchronous clear
module counter(input clk_in, enb_in, clr_in, output reg [3:0] count_out);

always_ff @(posedge clk_in) begin
count_out <= clr_in ? 4'b@ : (enb_in ? count out+l : count_out);

end L.
Combinational
endmodule
4
,/ » count_out
clr_in .
E m clk_in
enb_in —
9/19/2019 6.111 Fall 2019 Quite a bit similarity to Lab 2 24

Example: Simple Counter

¢ Can still specify combinational logic when making sequential
logic in aleys_ﬁ' Bllocks! & & sed Summa ry

// 4-bit counter with enable and synchronous clear
module counter(input clk_in, enb_in, clr_in, output reg [3:0] count_out);

always_ff @(posedge clk_in) begin
count out == tlr_in ? 4'b® : (enb_in ? count_out+1l : count_out);

end)
Sequential

endmodule

count_out

9/19/2019 6.111 Fall 2019 Quite a bit similarity to Lab 2 45

* If a logic is assigned values with an assign statement
OR inside a always_comb block, it will synthesize to the

result of combinational logic
* If a logic is assigned values within a always_ff block, it
will synthesize to a value on a D-flip-flop

* While you can mix = and <=, it is really, really

discouraged:
e Use = inside always_comb
* Use <= inside always_ff

9/19/2019 6.111 Fall 2019 46

Lab 2 Starter Code

...With this all in mind, let’s revisit Lab 2’s starter code

9/19/2019 6.111 Fall 2019 47

Lab 2 Starter
Code

* Has a little bit of
everything:

assign statements / i
Synthesize to combinaﬂ'W'
always_comb blocks

Synthesize to combinational logic

Allow you to be more expressive

always_ff blocks /

Synthesize to sequential logic

9/19/2019 6.111 Fall 2019 48

Implicit wire data types

e wire data types can only be given values through an assign
statement (can’t on left side of = or <=in an always block)

* Qutputs on modules default to wires unless speC|f|ed

Otherw|se module seven_seg_controller(input clk
input r
input [31:0] val_in
output logic(7:@] cat_out,
output logic[7:0] an_out

Could also say just output [7:0] cat_out

but then you can only do:
assign cat_out = blah blah blah;

If it is declared as a logic, then you can do either:

assign cat_out = blah blah blah;

OR
always_{F @(posedge clk_in)begin always_comb begin

cat_out <= blah blah blah; OR cat_out = blah blah blab;
end end

Depending on need...

9/19/2019 6.111 Fall 2019

49

Can write your combinational logic in
whatever way you most prefer!

assign cat_out = ~led_out;
° BOt.h types Of . assign an_out = ~segment_state;
assignments turn into

combinational logic shans oo eeln
case(segment_state)
. 8'b0000_poel: routed_vals = val_in[3:8];
° ThIS one COUId be done 8'b00R0_0010: routed_vals = in[7:4];
. 8'booed_0100: routed_vals = val_in[11:8];
W|th d neStEd ternary 8'b00R0_1000: routed_vals = val_in[15:12];
o 8'bBRe1_0ena: routed_vals = val_in[19:16];
Operator, but it would 8'b0010_0008: routed vals = val _in[23:20];
8'b0100_80R0: routed_vals = val_in[27:24];
be gross 8'b1000_poea: routed_vals = val_in[31:28];
default: routed_vals = val_in[3:08];
endcase
end
9/19/2019 6.111 Fall 2019 50

always_comb begin
case(segment_state)

Sa m e Th i n g 8'be0e0_0eel: routed_vals = val_in[3:0];

8'bo0ea_no10: routed_vals = val_in[7:4];

B'b00o0_0100: routed_vals = val_in[11:
8'b00e0_1000: routed_vals = val_in[15:
8'b0001_0eoa: routed_vals = val_in|
These do the same 8'bR010_0000: routed_vals = val_in[23:
8'b@100_o0ea: routed_vals = val_in([27

thing...create combinational

8];
12);

:16];

20];

124];

28];

. 8'blOgd_ooe: routed_vals = val_in[31;:
lOg’C default: routed_vals = val_in[3:0];
endcase
end

assign routed_vals = segment_state==8'b0000_00017 val_in[3:0]:

segment_stat
segment_state=
segment_state=
segment_state=
segment_state=

8'beeee_e010? val_in(7:4]:
8'b00ee_01007 val_in[11:8]:
8'b0o0ee_10007 val_in[15:12]:
8'b0R01_0eeen? val_in[19:16]:
8'b0010_eoea? val_in[23:20]:

segment_state==8'b0100_00007 val_in[27:24]:
segment_state==8'b1000_eee0? val_in[31:28]: val_in[3:0];

9/19/2019 6.111 Fall 2019

51

Sequential (Synchronous) Logic

“Every rising clk edge, if rst_in asserted, reset things to 0. Otherwise if segment_counter is
100,000, reset segment_counter and rotate segment_state. Otherwise, increment
segment_counter by 1...”

always_ff @(posedge clk_in)begin
if (rst_in)begin
segment_state <= 8'b0000_0001;
segment_counter <= 32'b@;
end else begin
if (segment_counter == 32'd10@_0@0)begin
segment_counter <= 32'de;
segment_state <= {segment_state([6:0],segment_state(7]};
end else begin
segment_counter <= segment_counter +1;
end
end
end

9/19/2019 6.111 Fall 2019 52

Resetting to a Known State!

* Usually one can’t rely on registers
powering-on to a particular initial state*.
So most designs have a RESET signal that
when asserted initializes all the state to
known, mutually consistent initial valu

reset

always_ff @(posedge cl
if (rst_in}

segment_state <= 8'bB0GA_02001;

in)begin

9in

segment_counter <= 32'b@;
end else begin

if (se = 32'd19@_0ae)begin

end else begin
segment_counter <= segment_counter +1;
end
end
end

* Actually, our FPGAs will reset all registers to 0 when the device is programmed, unless otherwise specified. But
it’s nice to be able to press a reset button to return to a known state rather than starting from scratch by
reprogramming the device.

9/19/2019 6.111 Fall 2019 53

Interfacing to Sequential
Logic

...0r what are the problems with working with Sequential
Logic?....Optional for today depending on timing

9/19/2019 6.111 Fall 2019 54

§ =undetermined state

D-Register Timing 1

p—bp o —q Q
CLK—

CLK

—

IMPORTANT:

ZtSETUP ZtHOLD
t,p: maximum propagation delay, @posedge CLK D —»Q
Maximum time it takes for Q to change after rising edge of CLK

tep: minimum contamination delay, @posedge CLK D —-Q
Minimum time it takes for Q to start to change after rising edge of CLK

teeryp: S€tup time
How long D must be stable before the rising edge of CLK

.00 hold time
How long D must be stable after the rising edge of CLK for registers

New timing attributes

9/19/2019 6.111 Fall 2019 55

Asynchronous Inputs in Sequential Systems

— \—/ Sequential Can’t guarantee

J_ O O System setup and hold
= times will be met!

|)

When an asynchronous signal causes a setup/hold violation...
1] I

! it

Q / e
D = o

cock G . BRI

Transition is missed on first Transition is caught on Output is metastable for an
clock cycle, but caught on first clock cycle. indeterminate amount of time.
next clock cycle.

CLK

Q: Which cases are problematic?

9/19/2019 6.111 Fall 2019 56

Asynchronous Inputs in Sequential Systems

Clocked
Synchronous
System

e All of them can be, if more than one
happens simultaneously within the same
circuit.

* Guidelines: Ensure that external signals
feed exactly one flip-flop

Figure 2. Effects of Violating tsy & 1y Requirements

Metastability = -

N\ A7
s /
I-'I \ il \
. -4/) V.
* D-registers havg B S oy
metastable regions i oty e s
with all that g st s '

feedback and stuff

going on. Can go
Figure 1. Metastability Timing Parameters

et Sequential
J_ O C D Q : Downstream Systems metaSta ble DATA m
/\ CLK
e
tyor e
CLK “ :
g e tue -
Metastability in Altera Devices
Altera Application Note 42 (1999)
9/19/2019 6.111 Fall 2019 57 9/19/2019 6.111 Fall 2019 58
I\/I T B F Figure 5. Metastability Characteristics of Altera Devices H a n d | I n g M eta Sta b I | Ity
10" FLEX 10K,
FLEX 8000 &

10" FLEX 6000

10 Years
1 Year
1 Month
MTBF 1 Wesk
{Seconds)
1 Day
1 Hour
MTBF: Mean Time Between Failure o
1 Minutg
Set by user (how much
. . T
extra time do you provide 5 6
per cycle for metastability
to dissipate)
Metastability in Altera Devices
9/19/2019 6.111 Fall 2019 Altera Application Note 42 (1999) 59

Asynchronous __|

input D1 [#3] D2 Q22—

FF1 FF2

A
Clock I |

Figure 8. Two-flip-flop synchronization circuit.

dok_O_@\ @ @O @ @ @\ @ O @\ [\ (@

or_f |

Y — I = & ' I

2 1 ' T _| —
(af (o.d) (c) (&)

* FF2 (D-reg2) might go a clock cycle late, but it will
almost never go metastable

“Metastability and Synchronizers: A Tutorial”
Ran Ginosar, Technion Israel Institute of Technology

9/19/2019 6.111 Fall 2019 60

Handling Metastability

¢ Preventing metastability turns out to be an impossible problem

* High gain of digital devices makes it likely that metastable
conditions will resolve themselves quickly

¢ Solution to metastability: allow time for signals to stabilize

Can be Very unlikely to be Extremely unlikely to be
metastable right metastable for >1 metastable for >2 clock
after sampling clock cycle cycles
oI L Complicated
f° ° b a-p dp = Sequential Logic
= X System
Clock é

How many registers are necessary?
¢ Depends on many design parameters (clock speed, device speeds, ...)
e 1In6.111, a pair of synchronization registers is sufficient

9/19/2019 6.111 Fall 2019 61

