
9/27/19

1

Lecture 7
LPset6 is due Thursday October 3

Lab 3 is Due next Tuesday October 1

9/26/19 6.111 Fall 2019 1

Pong in History:

• http://www.pong-story.com/gi.htm

9/26/19 6.111 Fall 2019 2

AY-3-8500 “Ball-and-Paddle” chip

https://commons.wikimedia.org/wiki/File:AY-3-8500.jpg

9/27/19

2

9/26/19 6.111 Fall 2019 3

Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that produces exactly the same

outputs.

• Can we simplify the FSM by removing equivalent states?

No! The outputs may be the same, but the
next-state transitions are not.

• This situation closely resembles a procedure call or function call in software...how can we

apply this concept to FSMs?
Acknowledgements: Rex Min

9/26/19 6.111 Fall 2019 4

The Major/Minor FSM Abstraction

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB
CLK

RESET RESET

CLK

• Subtasks are encapsulated in minor FSMs with common
reset and clock

• Simple communication abstraction:

• START: tells the minor FSM to begin operation (the call)

• BUSY: tells the major FSM whether the minor is done (the return)

• The major/minor abstraction is great for...

• Modular designs (always a good thing)

• Tasks that occur often but in different contexts

• Tasks that require a variable/unknown period of time

• Event-driven systems

9/27/19

3

9/26/19 6.111 Fall 2019 5

Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until the
minor FSM is

ready

2. Trigger the
minor FSM (and

make sure it’s
started)

3. Wait until the
minor FSM is

done

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”

9/26/19 6.111 Fall 2019 6

Inside the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

1. Wait for a trigger
from the major FSM

2. Do some useful work

T1
BUSY

START

START

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK

Minor FSM
State T1 T1 T2 T3 T4 T1 T1

3. Signal to the
major FSM that

work is done

can we
speed this

up?

9/27/19

4

9/26/19 6.111 Fall 2019 7

Optimizing the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

T1
BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
BUSY

T1
BUSY

START

START T4
BUSY

Bad idea #2:
BUSY never asserts!

T1
BUSY

START

START T2
BUSY

9/26/19 6.111 Fall 2019 8

A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C

STARTC

BUSYC

TICK

IDLE
STAB

STARTA

STARTB

WTAB

TICK
BUSYA and BUSYB

TICK
BUSYA or BUSYB BUSYA orBUSYB

STC

STARTC

BUSYA and BUSYB

BUSYC

WTC
BUSYC

BUSYC

BUSYC

Operating Scenario:

• Major FSM is triggered by TICK

• Minors A and B are started
simultaneously

• Minor C is started once both A
and B complete

• TICKs arriving before the
completion of C are ignored

MAJOR FSM

9/27/19

5

9/26/19 6.111 Fall 2019 9

Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK

Division (an example of an algorithm that
takes an unknown amount of time)

9/26/19 6.111 Fall 2019 10

Super efficient divider \s

9/27/19

6

A Divider

9/26/19 6.111 Fall 2019 11

• This is a Verilog FSM example of
the algorithm on the previous
page which will run an unknown
number of times given a set of
inputs

• This is how the functionality of a
while loop could be developed in
your modules

• Ugh has a few problems though
I’m just seeing now.

Clocking Issues
Thinking about a Few More Things Involving Clocks

9/26/19 6.111 Fall 2019 12

9/27/19

7

9/26/19 6.111 Fall 2019 13

Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time

Signal 1

Signal 1

Delay Estimation: Simple RC Networks

9/24/19 6.111 Lecture 4 14

vout

vin C

R

tp = ln (2) t = 0.69 RC

review

Low-to-High High-to-Low

Simple CMOS Circuit

9/27/19

8

RC Equation

9/24/19 6.111 Lecture 4 15

dt
dVC c

c
c V
dt
dVRC +

Vs = 5 V

Switch is closed t<0

Switch opens t>0

Vs = VR + VC

Vs = iR R+ Vc iR =

Vs =

÷÷
ø

ö
çç
è

æ
-=

-
RC
t

sc eVV 1

÷÷
ø

ö
çç
è

æ
-=

-
RC
t

c eV 15

9/26/19 6.111 Fall 2019 16

Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused a hold
time problem!

1. Wire delay
2. Different clocks!

Signal 1

Signal 1

9/27/19

9

Clocks are Not Perfect: Clock Skew

9/24/19 6.111 Lecture 4 17

D

clk1

QIn Combinational
Logic

D

clk2

Q

Wire delay

clk1

clk2

δ>0

CLout

tclk2 – tclk1tskew =
Based off of times of rising edges.

Not periods!

9/24/19 6.111 Lecture 4 18

Positive and Negative Skew

R1
In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK

d

TCLK + d

+ thd

2

1

4

3

R1
In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK

d

TCLK + d

2

1

4

3

Receiving edge arrives before the launching edge (negative skew)

Launching edge arrives before the receiving edge (positive skew)

ØAdapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
“Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

9/27/19

10

9/26/19 6.111 Fall 2019 19

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

This diagram again!?

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

9/26/19 6.111 Lecture 4 20

D-Register Timing With Skew
In the real world the clock signal arrives at
different registers at different times. The
difference in arrival times (pos or neg) is called
the clock skew tskew.
tskew = tRn,clk2 – tRn,clk1

Which skew is tougher to deal with (pos or neg)?

We can update our two timing constraints to
reflect the worst-case skew

Setup time: tRn,clk = tRn+1,clk

tRn,clk1+tPD,reg1+tPD,logic +tSETUP,reg2 ≤ tRn+1,clk2

Hold time:
tRn,clk1+tCD,reg1+tCD,logic ≥ tRn,clk2+tHOLD,reg2

tCD,reg1+tCD,logic ≥ tHOLD,reg2+ tskew

Thus clock skew increases the minimum cycle
time of our design and makes it harder to meet
register hold times.

tPD,reg1+tPD,logic+ tSETUP,reg2 ≤ tCLK + tskew

±skew

9/27/19

11

Clocks Are Not Perfectly Periodic either
Ugggh: Jitter

9/24/19 6.111 Lecture 4 21

tpd, tsu, thold

tclk – 2tjitter > tpd + tsu + tlogic

Typical crystal oscillator
100mhz (10ns)
Jitter: 1ps

9/26/19 6.111 Fall 2019 22

Low-skew Clocking in FPGAs

Figures from Xilinx App Notes

9/27/19

12

9/26/19 6.111 Fall 2019 23

Goal: use as few clock domains as possible
Suppose we wanted clocks at f/2, f/4, f/8, etc.:

reg clk2,clk4,clk8,clk16;
always @(posedge clk) clk2 <= ~clk2;
always @(posedge clk2) clk4 <= ~clk4;
always @(posedge clk4) clk8 <= ~clk16;
always @(posedge clk8) clk16 <= ~clk16;

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication between clk
and clk16 domains

No! don’t do
it this way

No vsync!

9/26/19 6.111 Fall 2019 24

Solution: One clock, Many enables
Use one (high speed) clock, but create enable signals to select a subset of the edges
to use for a particular piece of sequential logic

logic [3:0] count;
always_ff @(posedge clk) count <= count + 1; // counts 0..15
logic enb2, enb4, enb8, enb16;
assign enb2 = (count[0] == 1’b1);
assign enb4 = (count[1:0] == 2’b11);
assign enb8 = (count[2:0] == 3’b111);
assign enb16 = (count[3:0] == 4’b1111);

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1414

= clock edge selected by enable signal

always_ff @(posedge clk)
if (enb2) begin
// get here every 2nd cycle

end

9/27/19

13

9/26/19 6.111 Fall 2019 25

Generating Other
Clock Frequencies (again)

The Nexys4 board has a 100MHz crystal (10ns period). Use “clock wizard” to generate
other frequencies e.g., 65MHz to generate 1024x768 VGA video.

Clock Wizard can also synthesize certain
multiples/fractions of the CLKIN frequency (100
MHz):

CLKINCLKFX f
D
Mf ÷
ø
ö

ç
è
æ=

Where do we get frequencies?

• Most frequencies come from Crystal Oscillators made of quartz

• Equivalent to very High-Q LRC tank circuits

• https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

• Incorporate into circuit like that below and boom, you’ve got a

square wave of some specified frequency dependent largely on

the crystal

https://en.wikipedia.org/wiki/Crystal_oscillator

16MHz Crystal

http://www.z80.info/uexosc.htm

9/26/19 266.111 Fall 2019

https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

9/27/19

14

High Frequencies
• Very hard to get a crystal oscillator to operate above ~200 MHz (7th

harmonic of resonance of crystal itself, which usually is limited to
about 30 MHz due to fabrication limitations)

• Where does the 2.33 GHz clock of my iPhone come from then?

• Frequency Multipliers!

• Talk about Phase Locked Loops along the way!

9/26/19 276.111 Fall 2019

Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-controlled oscillators

that run up to 1GHz or more.

• Why don’t we just:

• Pick the voltage !" that is needed to get the

frequency we want #$? That’s gotta be specified

right?

• Same reason we don’t see op amps in open loop

out in the wild…they are too unstable…gotta place

them in negative feedback

A simple VCO (not type
found in FPGA)

VCO!" #$

9/26/19 286.111 Fall 2019

9/27/19

15

Phase Locked Loop

!"!#$%

!&$'(

LP Filter VCOCharge
Pump

Phase,
Frequency
Detector

• Place the unstable, but capable VCO in a feedback loop.
• This type of circuit is a phase-locked loop variant

9/26/19 296.111 Fall 2019

Phase Locked Loop

Phase,
Frequency
Detector

121345

16478

LP Filter VCOCharge
Pump

• Circuit that can track an input phase of a system and reproduce it at
the output

9/26/19 306.111 Fall 2019

9/27/19

16

Phase, Frequency Detector

!"!#$%

!&$'(

LP Filter VCOCharge
Pump

Phase,
Frequency
Detector

9/26/19 316.111 Fall 2019

Phase Detector
• Can be a simple XOR gate

• If near the desired frequency already this can work…if it
is too far out, it won’t and can be very unreliable since
phase and frequency are related but not quite the same
thing, it will lock onto harmonics, etc…

• For frequency we instead use a PFD:
• Phase/Frequency Detector:

9/26/19 326.111 Fall 2019

9/27/19

17

Phase-Frequency Detection
• Detects both change and which

clock signal is consistently leading
the other one
• Using MOSFETs you

charge/discharge a capacitor
accordingly which also with some
resistors low-pass filter’s the
signal
• The output voltage is then

roughly proportional to the
frequency error!

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output

9/26/19 336.111 Fall 2019

Phase Frequency Detection

9/26/19 6.111 Fall 2019 34

• Clock 1 and clock 2 are constantly
competing with one another to
generate up and down signals

• The up signals charge up a capacitors
through a pair of transistors…the
down signal discharges the capacitor

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf

9/27/19

18

Phase-Frequency Detection
• Detects both change and which

clock signal is consistently leading
the other one
• Using MOSFETs you

charge/discharge a capacitor
accordingly which also with some
resistors low-pass filter’s the
signal
• The output voltage is then

roughly proportional to the
frequency error!

PFD LPFCharge
Pump

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output

9/26/19 356.111 Fall 2019

PFD, Charge Pump, LP Filter

!"!#$%

!&$'(

LP Filter VCOCharge
Pump

Phase,
Frequency
Detector

• So this circuit can make !B = !#$% That doesn’t help us!
• How can we make a higher frequency?

9/26/19 366.111 Fall 2019

9/27/19

19

+
-

R2

Vo
VI

R1

V-

!" = !$
%&

%& + %(

V+ • A voltage divider in feedback path gives us
voltage gain!

Use Resistors in Voltage Divider in Feedback Path!

) = 1
1 − , + -

, ≈ 0.9999 means) = 1
-

- = %&
%& + %(

The gain 23 of this circuit is therefore:

23 =
%& + %(
%&

The gain of a “non-inverting amplifier”

9/26/19 376.111 Fall 2019

Same Idea with Phase Locked Loops!

Use a Clock Divider in Feedback
Path!

• A clock divider in feedback path gives us
clock gain!

!"!#$%

“!&$'(”

LP Filter VCOCharge
Pump

Phase,
Frequency
Detector

÷ CWe ”lie” to the PFD so that
it pushes the system more

9/26/19 386.111 Fall 2019

9/27/19

20

Use a Clock Divider in Feedback
Path!

!"!#$% = 27 MHz
LP Filter VCOCharge

Pump
Phase,

Frequency
Detector

÷ 4

9/26/19 39

reg clk2,clk4,clk8,clk16;
always @(posedge clk) clk2 <= ~clk2;
always @(posedge clk2) clk4 <= ~clk4;
always @(posedge clk4) clk8 <= ~clk16;
always @(posedge clk8) clk16 <= ~clk16;

6.111 Fall 2019

Number Representation

9/26/19 6.111 Fall 2019 40

9/27/19

21

9/26/19 6.111 Fall 2019 41

Encoding numbers

å
-

=
=

1n

0i
i

i b2v
2

11
2

10
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0

0 1 1 1 1 1 0 1 0 0 0 0

03720

Octal - base 8

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

0x7d0

Hexadecimal - base 16

0000 - 0 1000 - 8
0001 - 1 1001 - 9
0010 - 2 1010 - a
0011 - 3 1011 - b
0100 - 4 1100 - c
0101 - 5 1101 - d
0110 - 6 1110 - e
0111 - 7 1111 - f

Oftentimes we will find it
convenient to cluster groups

of bits together for a more
compact notation. Two
popular groupings are

clusters of 4 bits and ever so
rarely, 3 bits.

It is straightforward to encode positive integers as a sequence of bits. Each bit is
assigned a weight. Ordered from right to left, these weights are increasing powers
of 2. The value of an n-bit number encoded in this fashion is given by the following
formula:

= 200010

0273 0d7

9/26/19 6.111 Fall 2019 42

• Three common schemes:
• sign-magnitude, ones complement, twos complement

• Sign-magnitude: MSB = 0 for positive, 1 for negative
• Range: -(2N-1 – 1) to +(2N-1 – 1)
• Two representations for zero: 0000… & 1000…
• Simple multiplication but complicated addition/subtraction

Binary Representation of Numbers
How to represent negative numbers?

• Ones complement: if N is positive then its negative is N

– Example: 0111 = 7, 1000 = -7

– Range: -(2N-1 – 1) to +(2N-1 – 1)

– Two representations for zero: 0000… & 1111…

– Subtraction is addition followed by end-around carry (subtraction is
different from addition unit)

Basically flip every bit

of the number to

negate it

9/27/19

22

9/26/19 6.111 Fall 2019 43

Representing negative integers
To keep our arithmetic circuits simple, we’d like to find a representation for negative
numbers so that we can use a single operation (binary addition) when we wish to find
the sum of two integers, independent of whether they are positive or negative.

We certainly want A + (-A) = 0. Consider the following 8-bit binary addition where we
only keep 8 bits of the result:

11111111
+ 00000001

00000000

which implies that the 8-bit representation of -1 is 11111111. More generally

-A = 0 - A
= (-1 + 1)- A
= (-1 - A) + 1
= ~A + 1

1 1 1 1 1 1 1 1
- A7 A6 A5 A4 A3 A2 A1 A0

A7 A6 A5 A4 A3 A2 A1 A0

~ means bit-wise complement

Negation:
Complement
and add 1

9/26/19 6.111 Fall 2019 44

Signed integers: 2’s complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s complement representation for signed integers, the same
binary addition mod 2n procedure will work for adding positive and negative
numbers (don’t need separate subtraction rules). The same procedure will
also handle unsigned numbers!

By moving the implicit location of “decimal” point, we can represent fractions
too:

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “decimal” point
Range: – 2N-1 to 2N-1 – 1

9/27/19

23

9/26/19 6.111 Fall 2019 45

Sign extension

Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
= 11111010 + 1
= 11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011
Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

9/26/19 6.111 Fall 2019 46

Using Signed Arithmetic in Verilog

“<<<“ and “>>>” tokens result in arithmetic (signed) left and right

shifts: multiple by 2 and divide by 2.

Right shifts will maintain the sign by filling in with sign bit values

during shift

wire signed [3:0] value = 4’b1000; // -8

value >> 2 // results in 0010 or 2

value >>> 2 // results in 1110 or -2

9/27/19

24

ALL OF THE FOLLOWING ARE TREATED AS UNSIGNED
IN VERILOG!!!

• Any operation on two operands, unless both
operands are signed
• Based numbers (e.g. 12ʹd10), unless the explicit “s”

modifier is used)
• Bit-select results a[5]
• Part-select results a[4:2]
• Concatenations

9/26/19 6.111 Fall 2019 47

Using Signed Arithmetic in Verilog

http://billauer.co.il/blog/2012/10/signed-arithmetics-verilog/

logic [15:0] a; // Unsigned
logic signed [15:0] b;
logic signed [16:0] signed_a;
logic signed [31:0] a_mult_b;

assign signed_a = a;//Convert to signed
assign a_mult_b = signed_a * b

Example of multiplying signed by unsigned

For example:
module test_one;

logic signed [3:0] x;
logic [3:0] y;
logic signed [8:0] z;
initial begin

x = -2;
y=3;
z = x*y;
$display(x, y, z);
$finish;

end
endmodule

9/26/19 6.111 Fall 2019 48

module test_two;
logic signed [3:0] x;
logic signed [3:0] y;
logic signed [8:0] z;
initial begin

x = -2;
y=3;
z = x*y;
$display(x, y, z);
$finish;

end
endmodule

-2 3 42 -2 3 -6

Result: Result:

Not really synthesizable here ($finish, $display, etc)…but shows what Verilog is thinking

9/27/19

25

Signed Numbers

• Once you start using signed Verilog, just make
everything you’re using signed. If you do that, you
should be ok.
• Make sure everything upstream of a calculation has

been done in only a signed environment (held in
signed logics and used with signed logics.

• Signed/Unsigned bugs are some of the hardest to
find so be cautious

9/26/19 6.111 Fall 2019 49

