
Arithmetic Circuits & Multipliers
• Addition, subtraction
• Performance issues

-- ripple carry
-- carry bypass
-- carry skip
-- carry lookahead

• Multipliers

6.111 Fall 2019 1Lecture 8

Reminder: Lab #3 due Tue/Wed
Pizza Wed 6p. Thu 6p

Handouts
• lecture slides,

Sign up for Lab 3 Checkoff

6.111 Fall 2019 Lecture 8 2

6.111 Fall 2019 Lecture 1 3

State 1

State
2

State 4
State
3

State 0State 0

Memory Controller

6.111 Fall 2019 Lecture 1 4

6.111 Fall 2019 Lecture 1 5

Combinational
Logic

Current
State

Next
State

Input Output

Clock

always_comb @
begin // logic to determine next_state

case (state)
state_1: next_state = . . .
state_2: next_state = . . .
. . .

default: next_state = STATE_0;
endcase

end

always_ff @(posedge clock)
state <= next_state;

FSM

D

6.111 Fall 2019 Lecture 1 6

State 1

State
2

State 4
State
3

State 0State 0

module (
input req, clk,
output reg ras, mux, cas
);

logic [3:0] state, next_state:

parameter [3:0] STATE_0 = 0; // 0000
parameter [3:0] STATE_1 = 1; // 0001
parameter [3:0] STATE_2 = 2; // 0010
parameter [3:0] STATE_3 = 3; // 0011
parameter [3:0] STATE_4 = 4; // 0100

always_ff @(posedge clk) state <= next_state;

always_comb begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = state_0;

endcase
end

assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATE_3)||(state==STATE_4));
assign mux = (state==STATE_2)||(state==STATE_3)||(state==STATE_4);
assign cas = !((state==STATE_3)||(state==STATE_4));

endmodule

Glitchy Solution

6.111 Fall 2019 Lecture 1 7

Registered FSM Outputs are Glitch-
Free

reg DC,DN,DD;

// Sequential always block for state assignment
always_ff @ (posedge clk or negedge reset) begin

if (!reset) state <= IDLE;
else if (clk) state <= next;

DC <= (next == GOT_30c || next == GOT_35c ||
next == GOT_40c || next == GOT_45c ||
next == GOT_50c);

DN <= (next == RETURN_5c);
DD <= (next == RETURN_20c || next == RETURN_15c ||

next == RETURN_10c);
end

n

inputs
Next-
State

Comb.
Logic CLK

Output
Comb.
Logic

present state S

n

next
state

CLK

Output
Registers

D Q

State
Registers

D Q

registered
outputs

 Move output generation
into the sequential always
block

 Calculate outputs based
on next state

 Delays outputs by one
clock cycle. Problematic in
some application.

6.111 Fall 2019 Lecture 1 8

State 1

State 2 State 4
State 3

State 0State 0

module (
input req, clk,
output reg ras, mux, cas
);

logic[3:0] state, next_state:

parameter [3:0] STATE_0 = 0; // 0000
parameter [3:0] STATE_1 = 1; // 0001
parameter [3:0] STATE_2 = 2; // 0010
parameter [3:0] STATE_3 = 3; // 0011
parameter [3:0] STATE_4 = 4; // 0100

always_ff @(posedge clk) state <= next_state;

always_comb begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = state_0;

endcase
end

assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATE_3)||(state==STATE_4));
assign mux = (state==STATE_2)||(state==STATE_3)||(state==STATE_4);
assign cas = !((state==STATE_3)||(state==STATE_4));

endmodule

Glitchy Solution

always_ff @(posedge clk) begin
ras <= !((next_state==STATE_1)||(next_state2) . .

.

6.111 Fall 2019 Lecture 1 9

State 1

State
2

State 4
State
3

State 0State 0

module (
input req, clk,
output reg ras, mux, cas
);

logic [3:0] state, next_state:

parameter [3:0] STATE_0 = 4’b1010;
parameter [3:0] STATE_1 = 4’b0010;
parameter [3:0] STATE_2 = 4’b0110;
parameter [3:0] STATE_3 = 4’b0100;
parameter [3:0] STATE_4 = 4’b0101;

always_ff @(posedge clk) state <= next_state;

always_com begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = STATE_0;

endcase
end

assign {ras, mux, cas} = {state[3],state[2],state[1]};

endmodule

Another Glitch Free Solution

Hint: You will need four bits for
your state variable.

ras
mux

cas

6.111 Fall 2019 Lecture 1 10

module (
input req, clk,
output reg ras, mux, cas
);

logic [3:0] state, next_state:

parameter [3:0] STATE_0 = 4’b1010;
parameter [3:0] STATE_1 = 4’b0010;
parameter [3:0] STATE_2 = 4’b0110;
parameter [3:0] STATE_3 = 4’b0100;
parameter [3:0] STATE_4 = 4’b0101;

always_ff @(posedge clk) state <= next_state;

always_comb begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = STATE_0;

endcase
end

assign {ras, mux, cas} = {state[3],state[2],state[1]};

endmodule

Alternative Verilog

// next_state not needed

always_ff @(posedge clk) begin
case (state)

STATE_0: state <= req ? STATE_1 : STATE_0;
STATE_1: state <= STATE_2;
STATE_2: state <= STATE_3;
STATE_3: state <= STATE_4;
STATE_4: state <= STATE_0;
default: state <= STATE_0;

endcase
end

State 1

State
2

State 4
State
3

State 0State 0

Signed integers: 2’s complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s complement representation for signed integers, the
same binary addition mod 2n procedure will work for adding positive and
negative numbers (don’t need separate subtraction rules). The same
procedure will also handle unsigned numbers!

By moving the implicit location of “decimal” point, we can represent
fractions too:

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “decimal” point
Range: – 2N-1 to 2N-1 – 1

6.111 Fall 2019 11Lecture 8

Sign extension

Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
= 11111010 + 1
= 11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011

Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

6.111 Fall 2019 12Lecture 8

Adder: a circuit that does addition
Here’s an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1011
Carries from previous
column

Adding two N-bit
numbers produces an
(N+1)-bit result

If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers…

“Ripple-
carry
adder”

6.111 Fall 2019 13Lecture 8

“Full Adder” building block

A B C S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S  A  B C

CO  ABC  ABC  ABC  ABC
 (A  A)BC  (B  B)AC  AB(C  C)
 BC  AC  AB

The “half adder”
circuit has only the A
and B inputs

6.111 Fall 2019 14Lecture 8

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

So let’s build an arithmetic unit that does both addition and
subtraction. Operation selected by control input:

But what about
the “+1”?

6.111 Fall 2019 15Lecture 8

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit: To compare A and B,

perform A–B and use
condition codes:

Signed comparison:
LT NV
LE Z+(NV)
EQ Z
NE ~Z
GE ~(NV)
GT ~(Z+(NV))

Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates an add in the most
significant position produced a carry, e.g.,
1111 + 0001 from last FA

11  NCINNCOUTV

V (overflow): indicates that the answer has
too many bits to be represented correctly by
the result width, e.g.,
0111 + 0111

111111  NSNBNANSNBNAV

6.111 Fall 2019 16Lecture 8

Condition Codes in Verilog

6.111 Fall 2019 17Lecture 8

Z (zero): result is = 0

N (negative): result is < 0

C (carry): indicates an add in
the most significant position
produced a carry, e.g., 1111 +
0001

V (overflow): indicates that
the answer has too many bits
to be represented correctly
by the result width, e.g., 0111
+ 0111

wire signed [31:0] a,b,s;
wire z,n,v,c;
assign {c,s} = a + b;
assign z = ~|s;
assign n = s[31];
assign v = a[31]^b[31]^s[31]^c;

Might be better to use sum-of-products
formula for V from previous slide if
using LUT implementation (only 3
variables instead of 4).

Modular Arithmetic
The Verilog arithmetic operators (+,-,*) all produce full-precision results,
e.g., adding two 8-bit numbers produces a 9-bit result.

In many designs one chooses a “word size” (many computers use 32 or
64 bits) and all arithmetic results are truncated to that number of bits, i.e.,
arithmetic is performed modulo 2word size.

Using a fixed word size can lead to overflow, e.g., when the operation
produces a result that’s too large to fit in the word size. One can

•Avoid overflow: choose a sufficiently large word size
•Detect overflow: have the hardware remember if an operation produced
an overflow – trap or check status at end
•Embrace overflow: sometimes this is exactly what you want, e.g., when
doing index arithmetic for circular buffers of size 2N.
•“Correct” overflow: replace result with most positive or most negative
number as appropriate, aka saturating arithmetic. Good for digital signal
processing.

6.111 Fall 2019 18Lecture 8

Speed: tPD of Ripple-carry Adder

Worst-case path: carry propagation from LSB to MSB, e.g.,
when adding 11…111 to 00…001.

CI to CO CIN-1 to SN-1

(N) is read
“order N” :
means that the
latency of our
adder grows at
worst in
proportion to the
number of bits in
the operands.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR  (N)

6.111 Fall 2019 19Lecture 8

CO = AB + ACI + BCI

How about the tPD of this circuit?

Is the tPD of this circuit = 2 * tPD,N-BIT RIPPLE ?

Cn-1 Cn-2 C2 C1 C0

Nope! tPD of this circuit = tPD,N-BIT RIPPLE + tPD,FA !!!

Timing analysis is tricky!

6.111 Fall 2019 20Lecture 8

Alternate Adder Logic Formulation

Full
Adder

A B

S

Co
Cin

Generate (G) = AB
Propagate (P) = A  B

How to Speed up the Critical (Carry) Path?
(How to Build a Fast Adder?)

Note: can also use P = A + B for Co

Faster carry logic
Let’s see if we can improve the speed by rewriting the equations for
COUT:

COUT = AB + ACIN + BCIN

= AB + (A + B)CIN

= G + P CIN
where G = AB

P = A + B
generate propagate

Actually, P is usually
defined as P = A^B
which won’t change
COUT but will allow us
to express S as a
simple function :

S = P^CIN

A B

S

CINCOUT

6.111 Fall 2019 22Lecture 8

module fa(input a,b,cin, output s,cout);
wire g = a & b;
wire p = a ^ b;
assign s = p ^ cin;
assign cout = g | (p & cin);

endmodule

Carry Bypass Adder

C/S

P,G

Ci,0

P0 G0

A0 B0

Co,
0

C/S

P,G
P1 G1

A1 B1

Co,
1

C/S

P,G
P2 G2

A2 B2

Co,
2

C/S

P,G
P3 G3

A3 B3

Co,
3

Can compute P, G
in parallel for all bits

C/S

P,G

Ci,0

P0 G0

Co,
0

C/S

P,G
P1 G1

Co,1
C/S

P,G
P2 G2

Co,
2

C/S

P,G
P3 G3

0

1

BP= P0P1P2P3

Co,
3

Key Idea: if (P0 P1 P2 P3) then Co,3 = Ci,0

6.111 Fall 2019 23Lecture 8

16-bit Carry Bypass Adder

C/S

P,G

Ci,0

Co,0

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

C/S

P,G

Co,4

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P4P5P6P7

Co,5 Co,6

Co,7 C/S

P,G

Co,8

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P8P9P10P11

Co,9 Co,10

C/S

P,G

Co,11

Co,12

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P12P13P14P15

Co,13 Co,14

Co,15

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
P, G, Ci to Co or Sum for a C/S: 1 delay unit
2:1 mux delay: 1 delay unit

Co,3

What is the worst case propagation delay for
the 16-bit adder?

6.111 Fall 2019 24Lecture 8

Critical Path Analysis

C/S

P,G

Ci,0

Co,0

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

C/S

P,G

Co,4

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP2= P4P5P6P7

Co,5 Co,6

Co,7 C/S

P,G

Co,8

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP3= P8P9P10P11

Co,9 Co,10

C/S

P,G

Co,11

Co,12

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP4= P12P13P14P15

Co,13 Co,14

Co,15

Co,3

For the second stage, is the critical path:

BP2 = 0 or BP2 = 1 ?

Message: Timing analysis is very tricky –
Must carefully consider data dependencies for false paths

6.111 Fall 2019 25Lecture 8

Carry Bypass vs Ripple Carry

This image
cannot
currently
be
displayed.
This
image
cannot
currentl
y be

This image
cannot
currently be
displayed.

This
image
cannot
currentl
y be …

Thi i t tl b di l d

N

tadder

ripple adder

bypass adder

4..8

Ripple Carry: tadder = (N-1) tcarry + tsum

Carry Bypass: tadder = 2(M-1) tcarry + tsum + (N/M-1) tbypass

N = number of
bits being
added

M = bypass
word size

6.111 Fall 2019 26Lecture 8

Carry Lookahead Adder (CLA)

• Recall that COUT = G + P CIN where G = A&B and P = A^B

CN = GN-1 + PN-1CN-1

= GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2

= GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN

• For adding two N-bit numbers:

CN in only 3 gate delays* :
1 for P/G generation, 1 for ANDs, 1 for final OR

• Idea: pre-compute all carry bits as f(Gs,Ps,CIN)

*assuming gates with N inputs

6.111 Fall 2019 27Lecture 8

Carry Lookahead Circuits

6.111 Fall 2019 28Lecture 8

The 74182 Carry Lookahead Unit

6.111 Fall 2019 29Lecture 8

Block Generate and Propagate
G and P can be computed for groups of bits (instead of just for
individual bits). This allows us to choose the maximum fan-in we
want for our logic gates and then build a hierarchical carry chain
using these equations:

where I < J and J+1 < K

CJ+1 = GIJ + PIJCI

GIK = GJ+1,K + PJ+1,K GIJ

PIK = PIJ PJ+1,K

“generate a carry from bits I thru
K if it is generated in the high-order
(J+1,K) part of the block or if it is

generated in the low-order (I,J) part
of the block and then propagated
thru the high part”

P/G generation

1st level of
lookahead

Hierarchical building block
6.111 Fall 2019 30Lecture 8

8-bit CLA (P/G generation)

From Hennessy & Patterson, Appendix A

Log2(N)

6.111 Fall 2019 31Lecture 8

8-bit CLA (carry generation)

Log2(N)

6.111 Fall 2019 32Lecture 8

8-bit CLA (complete)

tPD = Θ(log(N))

6.111 Fall 2019 33Lecture 8

A0A1A2A3
B0B1B2B3

A0B0A1B0A2B0A3B0

A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

A0B3A1B3A2B3A3B3

x

+

ABi called a “partial product”

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products
(just an AND gate since BI is either 0 or 1)

Hard part: adding M N-bit partial products

Unsigned Multiplication

6.111 Fall 2019 34Lecture 8

Combinational Multiplier (unsigned)
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

 Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in
multiplier (each bit needs just one AND
gate)

6.111 Fall 2019 35Lecture 8

Combinational Multiplier (signed!)
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

x3

FA

x2

FA

x1

FA

x2

FA

x1

FA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

FAFAFA

FA

FA

FA

FA

1 NB: There are tricks we
can use to eliminate the
extra circuitry we added…

6.111 Fall 2019 36Lecture 8

2’s Complement Multiplication

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Step 1: two’s complement operands so high
order bit is –2N-1. Must sign extend partial
products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering to
subtract it at the end. Convert subtraction into add
of (complement + 1).

Step 3: add the ones to the partial products
and propagate the carries. All the sign
extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1
- 1 1 1 1

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

(Baugh-Wooley)

6.111 Fall 2019 37Lecture 8

Baugh Wooley Formulation – The Math
no insight required

Assuming X and Y are 4-bit twos complement numbers:
X = -23x3 + Σ xi2i Y = -23y3 + Σ yi2i

The product of X and Y is:

XY = x3y326 - Σ xiy32i+3 - Σ x3yj2j+3 + Σ Σ xiyj2i+j

For twos complement, the following is true:
-Σ xi2i = -24 + Σ xi2i + 1

The product then becomes:

i=0 i=0

i=0 i=0

i=0 i=0

j=0 j=0

2 2

2 2 2 2

XY = x3y326 + Σ xiy32i+3 + 23 - 26 + Σ x3yj2j+3 + 23 – 26 + Σ Σ xiyj2i+j

= x3y326 + Σ xiy32i+3 + Σ x3yj2j+3 + Σ Σ xiyj2i+j + 24 – 27
i=0

i=0 i=0

i=0j=0 j=0

j=0j=0

2 2 2 2

2 2 2 2

3 3

= – 27 + x3y326 + (x2y3 + x3y2)25 + (x1y3 + x3y1 + x2y2 +1)24

+ (x0y3 + x3y0 + x1y2 + x2y1)23 + (x0y2 + x1y1 + x2y0)22 1

+ (x0y1 + x1y0)21 +(x0y0)20

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

6.111 Fall 2019 39Lecture 8

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s
complement numbers, add the keyword signed to your wire or reg
declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different circuitry
if your multiplication operands are signed vs. unsigned. Same is true
of the >>> (arithmetic right shift) operator. To get signed operations all
operands must be signed.

To make a signed constant: 10’sh37C

6.111 Fall 2019 40Lecture 8

6.111 Fall 2019 Lecture 1 41

Artix-7 Details

Multiplier tpd = 3.97ns

Slice Overview

6.111 Fall 2019 Lecture 8 42

6.111 Fall 2019 Lecture 1 43

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier
(B) has M bits. If we only want to invest in a single N-bit
adder, we can build a sequential circuit that processes a
single partial product at a time and then cycle the circuit M
times:

AP B

+

SN

NC

N
xN

N

N+1

SN-1…S0
Init: P0, load A and B

Repeat M times {
P  P + (BLSB==1 ? A : 0)
shift P/B right one bit

}

Done: (N+M)-bit result in P/B

M bits

LSB

1

6.111 Fall 2019 44Lecture 8

Bit-Serial Multiplication

P

FAC

0

AB

Init: P = 0; Load A,B

Repeat M times {
Repeat N times {

shift A,P:
Amsb = Alsb
Pmsb = Plsb + Alsb*Blsb + C/0

}
shift P,B: Pmsb = C, Bmsb = Plsb

}

(N+M)-bit result in P/B

6.111 Fall 2019 45Lecture 8

Combinational Multiplier (unsigned)
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

 Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in
multiplier (each bit needs just one AND
gate)

6.111 Fall 2019 46Lecture 8

Useful building block: Carry-Save Adder

Last stage is still a carry-propagate adder (CPA)

Good for pipelining: delay
through each partial product
(except the last) is just
tPD,AND + tPD,FA.
No carry propagation time!

CSA

6.111 Fall 2019 47Lecture 8

Wallace Tree Multiplier

CSACSACSA

CSA

...

CSA

CSA

CSA

CPA

O(log1.5M)

Higher fan-in adders can be used to
further reduce delays for large M.

Wallace Tree:
Combine groups of
three bits at a time

This is called a 3:2
counter by multiplier
hackers: counts
number of 1’s on the 3
inputs, outputs 2-bit
result.

4:2 compressors and 5:3
counters are popular building
blocks.

6.111 Fall 2019 48Lecture 8

Artix-7 FPGA 3-2 Compressor

6.111 Fall 2019 Lecture 8 49

Wallace Tree *
Four Bit Multiplier

6.111 Fall 2019 Lecture 8 50

*Digital Integrated Circuits
J Rabaey, A Chandrakasan, B Nikolic

Multiplication by a constant
• If one of the operands is a constant, make it the multiplier (B in the

earlier examples). For each “1” bit in the constant we get a partial
product (PP) – may be noticeably fewer PPs than in the general
case.

– For example, in general multiplying two 4-bit operands generates four
PPs (3 rows of full adders). If the multiplier is say, 12 (4’b1100), then
there are only two PPs: 8*A+4*A (only 1 row of full adders).

– But lots of “1”s means lots of PPs… can we improve on this?

6.111 Fall 2019 Lecture 8 51

• If we allow ourselves to subtract PPs as well as adding them (the
hardware cost is virtually the same), we can re-encode arbitrarily
long contiguous runs of “1” bits in the multiplier to produce just two
PPs.

…011110… = …100000… - …000010… = …0100010…

where 1 indicates subtracting a PP instead of adding it. Thus we’ve re-
encoded the multiplier using 1,0,-1 digits – aka canonical signed digit –
greatly reducing the number of additions required.

Booth Recoding: Higher-radix mult.

AN-1 AN-2 … A4 A3 A2 A1 A0
BM-1 BM-2 … B3 B2 B1 B0x

...

2M/2

BK+1,K*A = 0*A  0
= 1*A  A
= 2*A  4A – 2A
= 3*A  4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating each
partial product we would halve the number of columns and halve the
latency of the multiplier!

Booth’s insight: rewrite 2*A
and 3*A cases, leave 4A for
next partial product to do!

6.111 Fall 2019 52Lecture 8

Booth recoding

BK+1

0
0
0
0
1
1
1
1

BK

0
0
1
1
0
0
1
1

BK-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed
to add 4*A. Since this stage is shifted by 2 bits
with respect to the previous stage, adding 4*A in
the previous stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair

6.111 Fall 2019 53Lecture 8

On-the-fly canonical signed digit encoding!

Summary

• Performance of arithmetic blocks dictate the
performance of a digital system

• Architectural and logic transformations can enable
significant speed up (e.g., adder delay from O(N) to
O(log2(N))

• Similar concepts and formulation can be applied at
the system level

• Timing analysis is tricky: watch out for false paths!
• Area-Delay trade-offs (serial vs. parallel

implementations)

6.111 Fall 2019 54Lecture 8

Lab 4 Car Alarm - Design Approach

• Read lab/specifications carefully, use reasonable
interpretation

• Use modular design – don’t put everything into lab4_main.sv
• Design the FSM!

– Define the inputs
– Define the outputs
– Transition rules

• Logical modules:
– fsm.v
– timer.v // the hardest module!!
– siren.v
– fuel_pump.v

• Run simulation on each module!
• Use hex display: show state and time
• Use logic analyzer in Vivado

6.111 Fall 2013 Lecture 8 55

Car Alarm – Inputs & Outputs

Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

Inputs:
• passenger door switch
• driver door switch
• ignition switch
• hidden switch
• brake pedal switch

Outputs:
• fuel pump power
• status indicator
• siren

6.111 Fall 2019 56Lecture 8

Fuel pump
relay

Cloaking
device

Car Alarm – CMOS Implementation

• Design Specs
– Operating voltage 8-18VDC
– Operating temp: -10C +65C
– Attitude: sea level
– Shock/Vibration

• Notes
– Protected against 24V power

surges
– CMOS implementation
– CMOS inputs protected against

200V noise spikes
– On state DC current <10ma
– Include T_PASSENGER_DELAY

and Fuel Pump Disable
– System disabled (cloaked) when

being serviced.

6.111 Fall 2019 57Lecture 8

Lecture 8

Debugging Hints – Lab 4

• Add parameter for fast debug mode for the one hz clock. This
will allow for viewing signals in simulation or ILA without waiting
for 25 million clock cycles. Avoids recomplilations.

module lab4_main.sv
timer #(.DIVISOR(25_000_000) my_timer(…)
// ---

module timer #(parameter DIVISOR=3) (input clk_25mhz, ….
// defaults to 3 clocks cycles
…
endmodule

586.111 Fall 2013

6.111 Fall 2019 Lecture 1 59

• Implement a speedy debug mode for the one hz clock. This will
allow for viewing signals on the ILA or simulation without
waiting for 25 million clock cycles. Avoids recomplilations.

assign speedy = sw[6];
always_ff @ (posedge clk) begin

if (count == (speedy ? 3 : 24_999_999)) count <= 0;
else count <= count +1;

end
assign one_hz = (count == (speedy ? 3 : 24_999_999)) ;

. . . Or use parameters . . .

module timer #(parameter DIVISOR=3) (input clk_25mhz, ….
// defaults to 3 clocks cycles
…

Debugging Hints – Lab 4

Lecture 8

One Hz Ticks in Simlulation

always #5 clk=!clk;
always begin

#5 tick = 1;
#10 tick = 0;
#15;

end

initial begin
// Initialize Inputs
clk = 0;
tick = 0; . . .

To create a one hz tick, use the following in the Verilog test fixture:

606.111 Fall 2013

logic signal_delayed;

always_ff @(posedge clk)
signal_delayed <= signal;

assign rising_edge = signal && !signal_delayed;
assign falling_edge = !signal && signal_delayed;

Lecture 8 61

Edge Detection

6.111 Fall 2013

Vivado ILA

• Integrated Logic Analyzer (ILA) IP core
– logic analyzer core that can be used to monitor the internal signals of a

design
– includes many advanced features of modern logic analyzers

• Boolean trigger equations,
• edge transition triggers ...

– no physical probes to hook up!

• Bit file must be loaded on target device. Not simulation.

6.111 Fall 2019 Lecture 8 62

Student Comments

• “All very reasonable except for lab 4, Car Alarm. Total
pain in the ass. “

• “The labs were incredibly useful, interesting, and helpful
for learning. Lab 4 (car alarm) is long and difficult, but
overall the labs are not unreasonable.”

6.111 Fall 2019 Lecture 8 63

6.111 Fall 2017 Lecture 9 64

z

module stage_1 (input clk_in,
input rst_in,
input[7:0] s1_in,
output logic [8:0] s1_out
);

//Generate two options: (See LPset 3)
௡ଵൌݕ																						 	 ௡ݔ ⊕ ௡ିଵݔ for 7 ൒ ݊ ൒ 1									 ௡ଶݕ ൌ 	 ௡ݔ ⊕ ௡ିଵݔ

//Identify transitions in each:
௡ିଵൌݐ																							 ௡ݕ	 ⊕ ௡ିଵݕ for 7 ൒ ݊ ൒ 1

//Tally the transitions in each situation:
݉ݑݏ	݊݃݅ݏݏܽ																						 ൌ 	1ݐ଴൅ݐ … 8ݐ	

//Based on tallies, choose one with fewer (or equal) and
//produce correct output

assign s1_out = (sum1<=sum2)? …
	

endmodule

Cyclic redundancy check - CRC

CRC16 (x16 + x15 + x2 + 1)

x16 r[15] r[14] + r[15] + x16

• Each “r” is a register, all clocked with a common clock.
Common clock not shown

• As shown, for register r15, the output is r[15] and the input
is the sum of r[14], r[15] and data input x16, etc

• The small round circles with the plus sign are adders
implemented with XOR gates.

• Initialize r to 16’hFFFF at start

The CRC-16 detects all single errors, all
double bit errors and all errors with burst
less than 16 bits in length.

CRC Solution CRC16: x16+x15+x2+1

