
Arithmetic Circuits & Multipliers
• Addition, subtraction
• Performance issues

-- ripple carry
-- carry bypass
-- carry skip
-- carry lookahead

• Multipliers
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Reminder: Lab #3 due  Tue/Wed
Pizza  Wed  6p. Thu 6p

Handouts
• lecture slides,



Sign up for Lab 3 Checkoff
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Combinational
Logic

Current
State

Next
State

Input Output

Clock

always_comb @ 
begin // logic to determine next_state

case (state)
state_1:  next_state = . . .
state_2:  next_state = . . .
.  .  .

default: next_state = STATE_0;
endcase

end

always_ff @(posedge clock)
state <= next_state;

FSM

D 
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State 1

State  
2

State 4
State  
3

State 0State 0

module (
input req, clk,
output reg ras, mux, cas
);

logic [3:0] state, next_state:

parameter [3:0] STATE_0 = 0;  // 0000
parameter [3:0] STATE_1 = 1;  // 0001
parameter [3:0] STATE_2 = 2;  // 0010
parameter [3:0] STATE_3 = 3;  // 0011
parameter [3:0] STATE_4 = 4;  // 0100

always_ff @(posedge clk)  state <= next_state;

always_comb begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = state_0;

endcase
end

assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATE_3)||(state==STATE_4));
assign mux = (state==STATE_2)||(state==STATE_3)||(state==STATE_4);
assign cas = !((state==STATE_3)||(state==STATE_4));

endmodule

Glitchy Solution



6.111 Fall 2019 Lecture 1 7

Registered FSM Outputs are Glitch-
Free

reg DC,DN,DD;

// Sequential always block for state assignment
always_ff @ (posedge clk or negedge reset) begin

if (!reset)   state <= IDLE;
else if (clk) state <= next;

DC <= (next == GOT_30c || next == GOT_35c ||
next == GOT_40c || next == GOT_45c || 
next == GOT_50c);

DN <= (next == RETURN_5c);
DD <= (next == RETURN_20c || next == RETURN_15c || 

next == RETURN_10c);
end

n

inputs
Next-
State

Comb.
Logic CLK

Output
Comb.
Logic

present state S

n

next
state

CLK

Output
Registers

D Q

State
Registers

D Q

registered 
outputs

 Move output generation 
into the sequential always 
block

 Calculate outputs based 
on next state

 Delays outputs by one 
clock cycle. Problematic in 
some application.
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State 1

State 2  State 4
State 3 

State 0State 0

module (
input req, clk,
output reg ras, mux, cas
);

logic[3:0] state, next_state:

parameter [3:0] STATE_0 = 0;  // 0000
parameter [3:0] STATE_1 = 1;  // 0001
parameter [3:0] STATE_2 = 2;  // 0010
parameter [3:0] STATE_3 = 3;  // 0011
parameter [3:0] STATE_4 = 4;  // 0100

always_ff @(posedge clk)  state <= next_state;

always_comb begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = state_0;

endcase
end

assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATE_3)||(state==STATE_4));
assign mux = (state==STATE_2)||(state==STATE_3)||(state==STATE_4);
assign cas = !((state==STATE_3)||(state==STATE_4));

endmodule

Glitchy Solution

always_ff @(posedge clk) begin  
ras <= !((next_state==STATE_1)||(next_state2) . . 

.
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State 1

State  
2

State 4
State  
3
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module (
input req, clk,
output reg ras, mux, cas
);

logic [3:0] state, next_state:

parameter [3:0] STATE_0 = 4’b1010;
parameter [3:0] STATE_1 = 4’b0010;
parameter [3:0] STATE_2 = 4’b0110;
parameter [3:0] STATE_3 = 4’b0100;
parameter [3:0] STATE_4 = 4’b0101;

always_ff @(posedge clk)  state <= next_state;

always_com begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = STATE_0;

endcase
end

assign {ras, mux, cas}  = {state[3],state[2],state[1]};

endmodule

Another Glitch Free Solution

Hint: You will need four bits for 
your state variable.

ras
mux

cas
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module (
input req, clk,
output reg ras, mux, cas
);

logic [3:0] state, next_state:

parameter [3:0] STATE_0 = 4’b1010;
parameter [3:0] STATE_1 = 4’b0010;
parameter [3:0] STATE_2 = 4’b0110;
parameter [3:0] STATE_3 = 4’b0100;
parameter [3:0] STATE_4 = 4’b0101;

always_ff @(posedge clk)  state <= next_state;

always_comb begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = STATE_0;

endcase
end

assign {ras, mux, cas}  = {state[3],state[2],state[1]};

endmodule

Alternative Verilog

// next_state not needed 

always_ff @(posedge clk)  begin
case (state)

STATE_0: state <= req ? STATE_1 : STATE_0;
STATE_1: state <= STATE_2;
STATE_2: state <= STATE_3;
STATE_3: state <= STATE_4;
STATE_4: state <= STATE_0;
default: state <= STATE_0;

endcase
end

State 1

State  
2

State 4
State  
3

State 0State 0



Signed integers: 2’s complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s complement representation for signed integers, the 
same binary addition mod 2n procedure will work for adding positive and 
negative numbers (don’t need separate subtraction rules).  The same 
procedure will also handle unsigned numbers!

By moving the implicit location of “decimal” point, we can represent 
fractions too:

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “decimal” point
Range: – 2N-1 to  2N-1 – 1
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Sign extension

Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
=  11111010 + 1
=  11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011

Extend the MSB (aka the “sign bit”) 
into the higher-order bit positions

6.111 Fall 2019 12Lecture 8



Adder: a circuit that does addition
Here’s an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1011
Carries from previous 
column

Adding two N-bit 
numbers produces an 
(N+1)-bit result

If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers…

“Ripple-
carry  
adder”

6.111 Fall 2019 13Lecture 8



“Full Adder” building block

A B C S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S  A  B C

CO  ABC  ABC  ABC  ABC
 (A  A)BC  (B  B)AC  AB(C  C)
 BC  AC  AB

The “half adder”
circuit has only the A 
and B inputs

6.111 Fall 2019 14Lecture 8



Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

So let’s build an arithmetic unit that does both addition and 
subtraction.  Operation selected by control input:

But what about 
the “+1”?

6.111 Fall 2019 15Lecture 8



Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit: To compare A and B,

perform A–B and use
condition codes:

Signed comparison:
LT NV
LE Z+(NV)
EQ Z
NE ~Z
GE ~(NV)
GT ~(Z+(NV))

Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

Z (zero): result is = 0               big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates an add in the most 
significant position produced a carry, e.g., 
1111 + 0001                       from last FA

11  NCINNCOUTV

V (overflow): indicates that the answer has 
too many bits to be represented correctly by 
the result width, e.g., 
0111 + 0111

111111  NSNBNANSNBNAV
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Condition Codes in Verilog
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Z (zero): result is = 0

N (negative): result is < 0

C (carry):  indicates an add in 
the most significant position 
produced a carry, e.g., 1111 + 
0001

V (overflow): indicates that 
the answer has too many bits 
to be represented correctly 
by the result width, e.g., 0111 
+ 0111

wire signed [31:0] a,b,s;
wire z,n,v,c;
assign {c,s} = a + b;
assign z = ~|s;
assign n = s[31];
assign v = a[31]^b[31]^s[31]^c;

Might be better to use sum-of-products 
formula for V from previous slide if 
using LUT implementation (only 3 
variables instead of 4).



Modular Arithmetic
The Verilog arithmetic operators (+,-,*) all produce full-precision results, 
e.g., adding two 8-bit numbers produces a 9-bit result.

In many designs one chooses a “word size” (many computers use 32 or 
64 bits) and all arithmetic results are truncated to that number of bits, i.e., 
arithmetic is performed modulo 2word size.  

Using a fixed word size can lead to overflow, e.g., when the operation 
produces a result that’s too large to fit in the word size.  One can

•Avoid overflow: choose a sufficiently large word size
•Detect overflow: have the hardware remember if an operation produced 
an overflow – trap or check status at end
•Embrace overflow: sometimes this is exactly what you want, e.g., when 
doing index arithmetic for circular buffers of size 2N.
•“Correct” overflow: replace result with most positive or most negative 
number as appropriate, aka saturating arithmetic.  Good for digital signal 
processing.
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Speed: tPD of Ripple-carry Adder

Worst-case path: carry propagation from LSB to MSB, e.g., 
when adding 11…111 to 00…001.

CI to CO CIN-1 to SN-1

(N) is read 
“order N” : 
means that the 
latency of our 
adder grows at 
worst in 
proportion to the 
number of bits in 
the operands.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR  (N)

6.111 Fall 2019 19Lecture 8

CO = AB + ACI + BCI



How about the tPD of this circuit?

Is the tPD of this circuit = 2 * tPD,N-BIT RIPPLE ?

Cn-1 Cn-2 C2 C1 C0

Nope! tPD of this circuit = tPD,N-BIT RIPPLE + tPD,FA !!!

Timing analysis is tricky!

6.111 Fall 2019 20Lecture 8



Alternate Adder Logic Formulation

Full 
Adder

A B

S

Co
Cin

Generate (G) = AB
Propagate (P) = A  B

How to Speed up the Critical (Carry) Path?
(How to Build a Fast Adder?) 

Note: can also use P = A + B for Co



Faster carry logic
Let’s see if we can improve the speed by rewriting the equations for 
COUT:

COUT = AB + ACIN + BCIN

= AB + (A + B)CIN

= G + P CIN
where G = AB

P = A + B
generate propagate

Actually, P is usually
defined as P = A^B
which won’t change
COUT but will allow us
to express S as a
simple function :

S = P^CIN

A B

S

CINCOUT
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module fa(input a,b,cin, output s,cout);
wire g = a & b;
wire p = a ^ b;
assign s = p ^ cin;
assign cout = g | (p & cin);

endmodule



Carry Bypass Adder

C/S

P,G

Ci,0

P0 G0

A0 B0

Co,
0

C/S

P,G
P1 G1

A1 B1

Co,
1

C/S

P,G
P2 G2

A2 B2

Co,
2

C/S

P,G
P3 G3

A3 B3

Co,
3

Can compute P, G 
in parallel for all bits

C/S

P,G

Ci,0

P0 G0

Co,
0

C/S

P,G
P1 G1

Co,1
C/S

P,G
P2 G2

Co,
2

C/S

P,G
P3 G3

0

1

BP= P0P1P2P3

Co,
3

Key Idea: if (P0 P1 P2 P3) then Co,3 = Ci,0
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16-bit Carry Bypass Adder

C/S

P,G

Ci,0

Co,0

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

C/S

P,G

Co,4

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P4P5P6P7

Co,5 Co,6

Co,7 C/S

P,G

Co,8

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P8P9P10P11

Co,9 Co,10

C/S

P,G

Co,11

Co,12

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P12P13P14P15

Co,13 Co,14

Co,15

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
P, G, Ci to Co or Sum for a C/S: 1 delay unit
2:1 mux delay: 1 delay unit

Co,3

What is the worst case propagation delay for 
the 16-bit adder? 
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Critical Path Analysis

C/S

P,G

Ci,0

Co,0

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

C/S

P,G

Co,4

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP2= P4P5P6P7

Co,5 Co,6

Co,7 C/S

P,G

Co,8

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP3= P8P9P10P11

Co,9 Co,10

C/S

P,G

Co,11

Co,12

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP4= P12P13P14P15

Co,13 Co,14

Co,15

Co,3

For the second stage,  is the critical path:

BP2 = 0 or    BP2 = 1 ? 

Message: Timing analysis is very tricky –
Must carefully  consider data dependencies for false paths
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Carry Bypass vs Ripple Carry

This image  
cannot 
currently 
be 
displayed.
This 
image  
cannot 
currentl
y be

This image  
cannot 
currently be 
displayed.

This 
image  
cannot 
currentl
y be …

Thi i t tl b di l d

N

tadder

ripple adder

bypass adder

4..8

Ripple Carry:     tadder = (N-1) tcarry + tsum

Carry Bypass:   tadder = 2(M-1) tcarry + tsum + (N/M-1) tbypass

N = number of 
bits being 
added

M = bypass 
word size
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Carry Lookahead Adder (CLA)

• Recall that COUT = G + P CIN where G = A&B and P = A^B

CN = GN-1 + PN-1CN-1

= GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2

= GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN

• For adding two N-bit numbers:

CN in only 3 gate delays* :
1 for P/G generation, 1 for ANDs, 1 for final OR

• Idea: pre-compute all carry bits as f(Gs,Ps,CIN)

*assuming gates with N inputs
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Carry Lookahead Circuits
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The 74182 Carry Lookahead Unit
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Block Generate and Propagate
G and P can be computed for groups of bits (instead of just for 
individual bits).  This allows us to choose the maximum fan-in we 
want for our logic gates and then build a hierarchical carry chain 
using these equations:

where I < J and J+1 < K

CJ+1 = GIJ + PIJCI

GIK = GJ+1,K + PJ+1,K GIJ

PIK = PIJ PJ+1,K 

“generate a carry from bits I thru
K if it is generated in the high-order
(J+1,K) part of the block or if it is

generated in the low-order (I,J) part
of the block and then propagated
thru the high part”

P/G generation

1st level of
lookahead

Hierarchical building block
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8-bit CLA (P/G generation)

From Hennessy & Patterson, Appendix A 

Log2(N)
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8-bit CLA (carry generation)

Log2(N)
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8-bit CLA (complete)

tPD = Θ(log(N))
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A0A1A2A3
B0B1B2B3

A0B0A1B0A2B0A3B0

A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

A0B3A1B3A2B3A3B3

x

+

ABi called a “partial product”

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products 
(just an AND gate since BI is either 0 or 1)

Hard part: adding M N-bit partial products

Unsigned Multiplication
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Combinational Multiplier (unsigned)
X3   X2   X1   X0

*  Y3   Y2   Y1   Y0
--------------------
X3Y0 X2Y0 X1Y0 X0Y0

+                X3Y1 X2Y1 X1Y1 X0Y1
+           X3Y2 X2Y2 X1Y2 X0Y2
+      X3Y3 X2Y3 X1Y3 X0Y3
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

 Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in 
multiplier (each bit needs just one AND 
gate)
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Combinational Multiplier (signed!)
X3 X2   X1   X0

*  Y3 Y2   Y1   Y0
--------------------

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

x3

FA

x2

FA

x1

FA

x2

FA

x1

FA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

FAFAFA

FA

FA

FA

FA

1 NB: There are tricks we 
can use to eliminate the 
extra circuitry we added…
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2’s Complement Multiplication

X3 X2   X1   X0
*  Y3 Y2   Y1   Y0
--------------------

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+    1              1

Step 1: two’s complement operands so high 
order bit is –2N-1.  Must sign extend partial 
products and subtract the last one

Step 2: don’t want all those extra additions, so 
add a carefully chosen constant, remembering to 
subtract it at the end. Convert subtraction into add 
of (complement + 1).

Step 3: add the ones to the partial products 
and propagate the carries.  All the sign 
extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands 
takes just about same amount of hardware as 
multiplying unsigned operands!

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+                        1
- 1    1    1    1

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+                        1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+                   1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+              1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+                        1
+         1
- 1    1    1    1

–B = ~B + 1

(Baugh-Wooley)
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Baugh Wooley Formulation – The Math
no insight required

Assuming X and Y are 4-bit twos complement numbers:
X = -23x3 + Σ xi2i Y = -23y3 + Σ yi2i

The product of X and Y is:

XY = x3y326 - Σ xiy32i+3 - Σ x3yj2j+3 + Σ Σ xiyj2i+j

For twos complement, the following is true: 
-Σ xi2i = -24 + Σ xi2i +  1

The product then becomes:

i=0 i=0

i=0 i=0

i=0 i=0

j=0 j=0

2 2

2 2 2 2

XY = x3y326 + Σ xiy32i+3 + 23 - 26 + Σ x3yj2j+3 + 23 – 26 + Σ Σ xiyj2i+j

= x3y326 + Σ xiy32i+3 + Σ x3yj2j+3 + Σ Σ xiyj2i+j + 24 – 27
i=0

i=0 i=0

i=0j=0 j=0

j=0j=0

2 2 2 2

2 2 2 2

3 3

=  – 27 + x3y326 + (x2y3 + x3y2)25 + (x1y3 + x3y1 + x2y2 +1)24

+ (x0y3 + x3y0 + x1y2 + x2y1)23 + (x0y2 + x1y1 + x2y0)22 1

+ (x0y1 + x1y0)21 +(x0y0)20



2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0
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X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+    1              1



Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b;   // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s 
complement numbers, add the keyword signed to your wire or reg
declaration: 

wire signed [9:0] a,b;
wire signed [19:0] result = a*b;  // signed multiplication!

Remember: unlike addition and subtraction, you need different circuitry 
if your multiplication operands are signed vs. unsigned.  Same is true 
of the >>> (arithmetic right shift) operator.  To get signed operations all 
operands must be signed.

To make a signed constant: 10’sh37C
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Artix-7 Details

Multiplier tpd = 3.97ns



Slice Overview
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Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier 
(B) has M bits.  If we only want to invest in a single N-bit 
adder, we can build a sequential circuit that processes a 
single partial product at a time and then cycle the circuit M 
times:

AP B

+

SN

NC

N
xN

N

N+1

SN-1…S0
Init: P0, load A and B

Repeat M times {
P  P + (BLSB==1 ? A : 0)
shift P/B right one bit

}

Done: (N+M)-bit result in P/B

M bits

LSB

1
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Bit-Serial Multiplication

P

FAC

0

AB

Init: P = 0; Load A,B

Repeat M times {
Repeat N times {

shift A,P:
Amsb = Alsb
Pmsb = Plsb + Alsb*Blsb + C/0

}
shift P,B: Pmsb = C, Bmsb = Plsb

}

(N+M)-bit result in P/B
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Combinational Multiplier (unsigned)
X3   X2   X1   X0

*  Y3   Y2   Y1   Y0
--------------------
X3Y0 X2Y0 X1Y0 X0Y0

+                X3Y1 X2Y1 X1Y1 X0Y1
+           X3Y2 X2Y2 X1Y2 X0Y2
+      X3Y3 X2Y3 X1Y3 X0Y3
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

 Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in 
multiplier (each bit needs just one AND 
gate)
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Useful building block: Carry-Save Adder

Last stage is still a carry-propagate adder (CPA)

Good for pipelining: delay 
through each partial product 
(except the last) is just
tPD,AND + tPD,FA.  
No carry propagation time!

CSA
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Wallace Tree Multiplier

CSACSACSA

CSA

...

CSA

CSA

CSA

CPA

O(log1.5M)

Higher fan-in adders can be used to 
further reduce delays for large M.

Wallace Tree: 
Combine groups of 
three bits at a time

This is called a 3:2 
counter by multiplier 
hackers: counts 
number of 1’s on the 3 
inputs, outputs 2-bit 
result.

4:2 compressors and 5:3 
counters are popular building 
blocks.
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Artix-7 FPGA 3-2 Compressor

6.111 Fall 2019 Lecture 8 49



Wallace Tree *
Four Bit Multiplier
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*Digital Integrated Circuits
J Rabaey, A Chandrakasan, B Nikolic



Multiplication by a constant
• If one of the operands is a constant, make it the multiplier (B in the 

earlier examples).  For each “1” bit in the constant we get a partial 
product (PP) – may be noticeably fewer PPs than in the general 
case.

– For example, in general multiplying two 4-bit operands generates four 
PPs (3 rows of full adders).  If the multiplier is say, 12 (4’b1100), then 
there are only two PPs: 8*A+4*A (only 1 row of full adders).

– But lots of “1”s means lots of PPs… can we improve on this?
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• If we allow ourselves to subtract PPs as well as adding them (the 
hardware cost is virtually the same), we can  re-encode arbitrarily 
long contiguous runs of “1” bits in the multiplier to produce just two 
PPs.

…011110… = …100000… - …000010… = …0100010…

where 1 indicates subtracting a PP instead of adding it.  Thus we’ve re-
encoded the multiplier using 1,0,-1 digits – aka canonical signed digit –
greatly reducing the number of additions required.



Booth Recoding: Higher-radix mult.

AN-1 AN-2 …   A4 A3 A2 A1 A0
BM-1 BM-2 …   B3 B2 B1 B0x

...

2M/2

BK+1,K*A = 0*A  0
= 1*A  A
= 2*A  4A – 2A
= 3*A  4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating each 
partial product we would halve the number of columns and halve the 
latency of the multiplier!

Booth’s insight: rewrite 2*A 
and 3*A cases, leave 4A for 
next partial product to do! 
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Booth recoding

BK+1

0
0
0
0
1
1
1
1

BK

0
0
1
1
0
0
1
1

BK-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed 
to add 4*A.  Since this stage is shifted by 2 bits 
with respect to the previous stage, adding 4*A in 
the previous stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair
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On-the-fly canonical signed digit encoding!



Summary

• Performance of arithmetic blocks dictate the 
performance of a digital system

• Architectural and logic transformations can enable 
significant speed up (e.g., adder delay from O(N) to 
O(log2(N))

• Similar concepts and formulation can be applied at 
the system level

• Timing analysis is tricky: watch out for false paths!
• Area-Delay trade-offs (serial vs. parallel 

implementations)
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Lab 4 Car Alarm - Design Approach

• Read lab/specifications carefully, use reasonable 
interpretation

• Use modular design – don’t put everything into lab4_main.sv
• Design the FSM!

– Define the inputs
– Define the outputs
– Transition rules

• Logical modules:
– fsm.v
– timer.v // the hardest module!!
– siren.v
– fuel_pump.v

• Run simulation on each module!
• Use hex display: show state and time
• Use logic analyzer in Vivado
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Car Alarm – Inputs & Outputs

Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

Inputs:
• passenger door switch
• driver door switch
• ignition switch
• hidden switch
• brake pedal switch

Outputs:
• fuel pump power
• status indicator
• siren
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Fuel pump 
relay

Cloaking 
device

Car Alarm – CMOS Implementation

• Design Specs
– Operating voltage 8-18VDC
– Operating temp: -10C +65C
– Attitude: sea level
– Shock/Vibration

• Notes
– Protected against 24V power 

surges
– CMOS implementation
– CMOS inputs protected against 

200V noise spikes 
– On state DC current <10ma
– Include T_PASSENGER_DELAY 

and Fuel Pump Disable
– System disabled (cloaked) when 

being serviced. 
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Lecture 8

Debugging Hints – Lab 4

• Add parameter for fast debug mode for the one hz clock. This 
will allow for viewing signals in simulation or ILA without waiting 
for 25 million clock cycles. Avoids recomplilations.

module lab4_main.sv 
timer  #(.DIVISOR(25_000_000)  my_timer(…)
// -------------------------------------------------

module timer #(parameter DIVISOR=3)  (input clk_25mhz, ….
// defaults to 3 clocks cycles
…
endmodule

586.111 Fall 2013



6.111 Fall 2019 Lecture 1 59

• Implement a speedy debug mode for the one hz clock. This will 
allow for viewing signals on the ILA or simulation  without 
waiting for 25 million clock cycles. Avoids recomplilations.

assign speedy = sw[6]; 
always_ff @ (posedge clk) begin

if (count == (speedy ? 3 : 24_999_999)) count <= 0;
else count <= count +1;

end
assign one_hz = (count == (speedy ? 3 : 24_999_999)) ;

. . . Or use parameters . . . 

module timer #(parameter DIVISOR=3)  (input clk_25mhz, ….
// defaults to 3 clocks cycles
…

Debugging Hints – Lab 4



Lecture 8

One Hz Ticks in Simlulation

always #5 clk=!clk;
always  begin

#5 tick = 1;
#10 tick = 0;
#15;

end

initial begin
// Initialize Inputs
clk = 0;
tick = 0;  . . .

To create a one hz tick, use the following in the Verilog test fixture:
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logic signal_delayed;

always_ff @(posedge clk) 
signal_delayed <= signal;

assign rising_edge = signal && !signal_delayed;
assign falling_edge = !signal && signal_delayed;
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Edge Detection
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Vivado ILA

• Integrated Logic Analyzer (ILA) IP core 
– logic analyzer core that can be used to monitor the internal signals of a 

design
– includes many advanced features of modern logic analyzers

• Boolean trigger equations, 
• edge transition triggers ...

– no physical probes to hook up!

• Bit file must be loaded on target device.  Not simulation.
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Student Comments

• “All very reasonable except for lab 4, Car Alarm. Total 
pain in the ass. “

• “The labs were incredibly useful, interesting, and helpful 
for learning. Lab 4 (car alarm) is long and difficult, but 
overall the labs are not unreasonable.”
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z

module stage_1 (input clk_in, 
input rst_in, 
input[7:0] s1_in, 
output logic [8:0] s1_out
);

//Generate two options: (See LPset 3)
௡ଵൌݕ																						 	 ௡ݔ ⊕ ௡ିଵݔ for 7 ൒ ݊ ൒ 1									 ௡ଶݕ ൌ 	 ௡ݔ ⊕ ௡ିଵݔ

//Identify transitions in each:
௡ିଵൌݐ																							 ௡ݕ	 ⊕ ௡ିଵݕ for 7 ൒ ݊ ൒ 1

//Tally the transitions in each situation:
݉ݑݏ	݊݃݅ݏݏܽ																						 ൌ 	1ݐ଴൅ݐ … 8ݐ	

//Based on tallies, choose one with fewer (or equal) and 
//produce correct output

assign s1_out = (sum1<=sum2)? …
	

endmodule



Cyclic redundancy check - CRC

CRC16 (x16 + x15 + x2 + 1) 

x16       r[15]              r[14] + r[15] + x16 

• Each “r” is a register, all clocked with a common clock. 
Common clock not shown

• As shown, for register  r15, the output is r[15]  and the input 
is  the sum of r[14], r[15] and data input x16, etc

• The small round circles with the plus sign are adders 
implemented with XOR gates.  

• Initialize r to 16’hFFFF at start

The CRC-16 detects all single errors, all 
double bit errors and all errors with burst 
less than 16 bits in length.



CRC Solution CRC16: x16+x15+x2+1


