

Arithmetic Circuits \& Multipliers

- Addition, subtraction
- Performance issues
-- ripple carry
-- carry bypass
-- carry skip
-- carry lookahead
- Multipliers

> Reminder: Lab \#3 due Tue/Wed Pizza Wyod $6 p$. Thu $6 p$

Handouts

- lecture slides,

Sign up for Lab 3 Checkoff

Memory Controller

FSM


```
module (
Glitchy Solution
    input req, clk,
    output reg ras, mux, cas
    );
logic [3:0] state, next_state:
parameter [3:0] STATE_0 = 0; // 0000
parameter [3:0] STATE_1 = 1; // 0001
parameter [3:0] STATE_2 = 2; // 0010
parameter [3:0] STATE_3 = 3; // 0011
parameter [3:0] STATE_4 = 4; // 0100
always_ff @(posedge clk) state <= next_state;
always_comb begin
        case (state)
```



```
            STATE_0: next_state = req ? STATE_1 : STATE_0;
            STATE_1: next_state = STATE_2;
            STATE_2: next_state = STATE_3;
            STATE_3: next_state = STATE_4;
            STATE_4: next_state = STATE_0;
            default: next_state = state_0;
        endcase
end
assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATE_3)||(state==STATE_4));
assign mux = (state==STATE_2)||(state==STATE_3)||(state==STATE_4);
assign cas = !((state==STATE_3)||(state==STATE_4));
endmodule
```


Registered FSM Outputs are GlitchFree

- Move output generation into the sequential always block
- Calculate outputs based on next state
- Delays outputs by one clock cycle. Problematic in some application.
reg DC,DN,DD;
// Sequential always block for state assignment
always_ff @ (posedge clk or negedge reset) begin if (!reset) state <= IDLE; else if (clk) state <= next;

DC <= (next $==$ GOT_30c || next $==$ GOT_35c || next == GOT_40c || next == GOT_45c || next == GOT_50c); DN <= (next == RETURN_5C); DD <= (next == RETURN_20c || next == RETURN_15c || next == RETURN_10c);
end

Glitchy Solution

```
module (
    input req, clk,
    output reg ras, mux, cas
    );
logic[3:0] state, next_state:
parameter [3:0] STATE_0 = 0; // 0000
parameter [3:0] STATE_1 = 1; // 0001
parameter [3:0] STATE_2 = 2; // 0010
parameter [3:0] STATE_3 = 3; // 0011
parameter [3:0] STATE_4 = 4; // 0100
always_ff @(posedge clk) state <= next_state;
always_comb begin
    case (state)
            STATE_0: next_state = req ? STATE_1 : STATE_0;
            STATE_1: next_state = STATE_2;
        STATE_2: next_state = STATE_3;
            STATE_3: next_state = STATE_4;
            STATE_4: next_state = STATE_0;
            default: next_state = state_0;
    endcase
end
```



```
REQ
RAS
MUX
CAS
```


State 2 State 4
State 3

```
always_ff @(posedge clk) begin
```

always_ff @(posedge clk) begin
ras <= !((next_state==STATE_1)||(next_state2) . .
ras <= !((next_state==STATE_1)||(next_state2) . .
.
assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATF_3)H(state==STATE_4));
assign mux = (statc=-STATF 2)||(state==STATF 3)Mi(sLate==STATE_4);
assign cas = !((state==ST\DeltaTट_O)i|i(state==STATC_1));
endmodule

```

\section*{Another Glitch Free Solution}
```

module (
input req, clk,
output reg ras, mux, cas
logic [3:0] state, next_state:/// cas
parameter [3:0] STATE_0 = 4'b1010;
parameter [3:0] STATE_1 = 4'b0010;
parameter [3:0] STATE_2 = 4'b0110;
parameter [3:0] STATE_3 = 4'b0100;
parameter [3:0] STATE_4 = 4'b0101;
always_ff @(posedge clk) state <= next_state;
always_com begin
case (state)
logic [3:0] state, next_state:/// mux
logic [3:0] state, next_state:/// mux

```

```

 ras
 REQ
RAS
MUX
CAS

```

```

 State
 STATE_0: next_state = req ? STATE_1 : STATE_0;
 STATE_1: next_state = STATE_2;
 STATE_2: next_state = STATE_3;
 STATE_3: next_state = STATE_4;
 STATE_4: next_state = STATE_0;
 default: next_state = STATE_0;
 endcase
 end
assign {ras, mux, cas} = {state[3],state[2],state[1]};
endmodule

```

\section*{Alternative Verilog}
```

module (
input req, clk,
output reg ras, mux, cas
);

```
logic [3:0] state, next_state:
parameter [3:0] STATE_0 = 4'b1010;
parameter [3:0] STATE_1 = 4'b0010;
parameter \([3: 0]\) STATE_2 \(=4^{\prime} \mathrm{b} 0110\);
parameter [3:0] STATE_2 = 4'b0110;
parameter [3:0] STATE_4 = 4'b0101;
```

always_ff @(posedge clk) state <= next_state;
always_comb begin
case (state)
STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = STATE_0;
endcase
end

```

REQ
RAS
MUX
CAS

```

// next_state not needed
always_ff @(posedge clk) begin
case (state)
STATE_0: state <= req ? STATE_1 : STATE_0;
STATE_1: state <= STATE_2;
STATE_2: state <= STATE_3;
STATE_3: state <= STATE_4;
STATE_4: state <= STATE_0;
default: state <= STATE_0;
endcase
end

```
assign \{ras, mux, cas\} \(=\) \{state[3], state[2], state[1]\};
endmodule

\section*{Signed integers: 2's complement}


8-bit 2's complement example:
\[
11010110=-2^{7}+2^{6}+2^{4}+2^{2}+2^{1}=-128+64+16+4+2=-42
\]

If we use a two's complement representation for signed integers, the same binary addition mod \(2^{n}\) procedure will work for adding positive and negative numbers (don't need separate subtraction rules). The same procedure will also handle unsigned numbers!

By moving the implicit location of "decimal" point, we can represent fractions too:
\[
1101.0110=-2^{3}+2^{2}+2^{0}+2^{-2}+2^{-3}=-8+4+1+0.25+0.125=-2.625
\]

\section*{Sign extension}

Consider the 8-bit 2's complement representation of:
\[
\begin{aligned}
42=00101010-5 & =\sim 00000101+1 \\
& =11111010+1 \\
& =11111011
\end{aligned}
\]

What is their 16-bit 2's complement representation?

\section*{\(42=0000000000101010\)}
\(-5=1111111111111011\)

Extend the MSB (aka the "sign bit") into the higher-order bit positions

\section*{Adder: a circuit that does addition}

Here's an example of binary addition as one might do it by "hand":

Adding two N -bit
numbers produces an ( \(\mathrm{N}+1\) )-bit result

If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers...


\section*{"Full Adder" building block}

The "half adder"

\begin{tabular}{ccc|cc}
\(A\) & \(B\) & \(C\) & \(S\) & \(C O\) \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular}
\[
S=A \oplus B \oplus C
\]
\[
\begin{aligned}
C O & =\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
& =(\bar{A}+A) B C+\overline{(B}+B) A C+A B \overline{(C}+C) \\
& =B C+A C+A B
\end{aligned}
\]

\section*{Subtraction: A-B = A + (-B)}

Using 2's complement representation: \(-\mathrm{B}=\sim \mathrm{B}+1\)
\[
\sim \text { = bit-wise complement }
\]


So let's build an arithmetic unit that does both addition and subtraction. Operation selected by control input:


\section*{Condition Codes}

Besides the sum, one often wants four other bits of information from an arithmetic unit:

Z (zero): result is \(=0\)
N (negative): result is < 0
C (carry): indicates an add in the most significant position produced a carry, e.g., 1111 + 0001 from last FA

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111
\[
\begin{aligned}
& V=A_{N-1} B_{N-1} \overline{S_{N-1}}+\overline{A_{N-1}}{\overline{B_{N-1}}}_{N-1} S_{N-1} \\
& V=\operatorname{COUT}_{N-1}{ }^{\oplus C I N_{N-1}}
\end{aligned}
\]

To compare \(A\) and \(B\), perform A-B and use condition codes:

Signed comparison:
LT N \(\oplus\) V
LE \(\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})\)
EQ Z
NE ~Z
\(\mathrm{GE} \sim(\mathrm{N} \oplus \mathrm{V})\)
\(G T \sim(Z+(N \oplus V))\)
Unsigned comparison:
\begin{tabular}{ll} 
LTU & C \\
LEU & \(\mathrm{C}+\mathrm{Z}\) \\
GEU & \(\sim \mathrm{C}\) \\
GTU & \(\sim(\mathrm{C}+\mathrm{Z})\)
\end{tabular}

\section*{Condition Codes in Verilog}

Z (zero): result is \(=0\)
N (negative): result is <0
C (carry): indicates an add in the most significant position produced a carry, e.g., 1111 + 0001

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111
```

wire signed [31:0] a,b,s;
wire z,n,v,c;
assign {c,s} = a + b;
assign z = ~|s;
assign n = s[31];
assign v = a[31]^b[31]^s[31]^c;

```

Might be better to use sum-of-products formula for \(V\) from previous slide if using LUT implementation (only 3 variables instead of 4).

\section*{Modular Arithmetic}

The Verilog arithmetic operators (+,-,*) all produce full-precision results, e.g., adding two 8 -bit numbers produces a 9 -bit result.

In many designs one chooses a "word size" (many computers use 32 or 64 bits) and all arithmetic results are truncated to that number of bits, i.e., arithmetic is performed modulo \(2^{\text {word size }}\).

Using a fixed word size can lead to overflow, e.g., when the operation produces a result that's too large to fit in the word size. One can
- Avoid overflow: choose a sufficiently large word size
-Detect overflow: have the hardware remember if an operation produced an overflow - trap or check status at end
-Embrace overflow: sometimes this is exactly what you want, e.g., when doing index arithmetic for circular buffers of size \(2^{\mathrm{N}}\).
-"Correct" overflow: replace result with most positive or most negative number as appropriate, aka saturating arithmetic. Good for digital signal processing.

\section*{Speed: \(t_{\text {PD }}\) of Ripple-carry Adder}
\[
C_{0}=A B+A C_{1}+B C_{1}
\]


Worst-case path: carry propagation from LSB to MSB, e.g., when adding \(11 \ldots 111\) to \(00 . . .001\).
\[
t_{P D}=(N-1)^{*}(\underbrace{\left.t_{P D, O R}+t_{P D, A N D}\right)}_{C l}+\underbrace{t_{P D, X O R}}_{C_{N-1} \text { to } S_{N-1}} \approx \Theta(N)
\]

\section*{How about the \(t_{\text {PD }}\) of this circuit?}


Is the \(t_{P D}\) of this circuit \(=2{ }^{*} t_{\text {PD,N-BIT RIPPLE }}\) ?

Nope! \(\mathrm{t}_{\mathrm{PD}}\) of this circuit \(=\mathrm{t}_{\text {PD,N-BIT RIPPLE }}+\mathrm{t}_{\mathrm{PD}, \mathrm{FA}}!!!\)

\section*{Alternate Adder Logic Formulation}

\section*{How to Speed up the Critical (Carry) Path? (How to Build a Fast Adder?)}
\begin{tabular}{|c|c|c||c|c||c|}
\hline \(\boldsymbol{A}\) & \(B\) & \(C_{i}\) & \(\boldsymbol{S}\) & \(C_{\boldsymbol{o}}\) & \begin{tabular}{c} 
Carry \\
status
\end{tabular} \\
\hline \hline 0 & 0 & 0 & 0 & 0 & delete \\
\hline 0 & 0 & 1 & 1 & 0 & delete \\
\hline \hline 0 & 1 & 0 & 1 & 0 & propagate \\
\hline 0 & 1 & 1 & 0 & 1 & propagate \\
\hline 1 & 0 & 0 & 1 & 0 & propagate \\
\hline 1 & 0 & 1 & 0 & 1 & propagate \\
\hline 1 & 1 & 0 & 0 & 1 & generate \\
\hline 1 & 1 & 1 & 1 & 1 & generate \\
\hline
\end{tabular}


Note: can also use \(P=A+B\) for \(C_{0}\)

\section*{Faster carry logic}

Let' s see if we can improve the speed by rewriting the equations for \(\mathrm{C}_{\text {OUT }}\) :

\[
\begin{aligned}
& \mathrm{C}_{\text {OUT }}=\mathrm{AB}+A C_{I N}+B C_{I N} \\
&=A B+(A+B) C_{\mathbb{I N}} \\
&=G+C_{\overparen{I N}} \\
& \text { generate propagate }
\end{aligned}
\]
```

module fa(input a,b,cin, output s,cout);
wire g = a \& b;
wire p = a ^ b;
assign s = p ^ cin;
assign cout = g | (p \& cin);
endmodule

```
where \(G=A B\) \(P=A+B\)


Actually, P is usually defined as \(P=A^{\wedge} B\) which won't change \(\mathrm{C}_{\text {OUt }}\) but will allow us to express \(S\) as a simple function :
\(S=P^{\wedge} C_{I N}\)

\section*{Carry Bypass Adder}


Key Idea: if \(\left(P_{0} P_{1} P_{2} P_{3}\right)\) then \(C_{0,3}=C_{i, 0}\)

\section*{16-bit Carry Bypass Adder}


\section*{What is the worst case propagation delay for the 16 -bit adder?}

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
\(\mathrm{P}, \mathrm{G}, \mathrm{C}_{\mathrm{i}}\) to \(\mathrm{C}_{0}\) or Sum for a C/S: 1 delay unit
2:1 mux delay: 1 delay unit

\section*{Critical Path Analysis}


For the second stage, is the critical path:
\[
\mathrm{BP} 2=0 \text { or } \mathrm{BP} 2=1 ?
\]

Message: Timing analysis is very tricky Must carefully consider data dependencies for false paths

\section*{Carry Bypass vs Ripple Carry}

Ripple Carry: \(\quad \mathrm{t}_{\text {adder }}=(\mathrm{N}-1) \mathrm{t}_{\text {carry }}+\mathrm{t}_{\text {sum }}\)
Carry Bypass: \(\mathrm{t}_{\text {adder }}=2(\mathrm{M}-1) \mathrm{t}_{\text {carry }}+\mathrm{t}_{\text {sum }}+(\mathrm{N} / \mathrm{M}-1) \mathrm{t}_{\text {bypass }}\)

\(M=\) bypass word size
\(\mathrm{N}=\) number of bits being added

\section*{Carry Lookahead Adder (CLA)}
- Recall that \(\quad C_{\text {OUT }}=G+P C_{I N} \quad\) where \(G=A \& B\) and \(P=A^{\wedge} B\)
- For adding two N -bit numbers:
\[
\begin{aligned}
C_{N} & =G_{N-1}+P_{N-1} C_{N-1} \\
& =G_{N-1}+P_{N-1} G_{N-2}+P_{N-1} P_{N-2} C_{N-2} \\
& =G_{N-1}+P_{N-1} G_{N-2}+P_{N-1} P_{N-2} G_{N-3}+\ldots+P_{N-1} \ldots P_{0} C_{I N}
\end{aligned}
\]
\(\mathrm{C}_{\mathrm{N}}\) in only 3 gate delays*:
1 for P/G generation, 1 for ANDs, 1 for final OR *assuming gates with N inputs
- Idea: pre-compute all carry bits as \(f\left(\mathrm{Gs}, \mathrm{Ps}, \mathrm{C}_{\mathbb{N}}\right)\)

\section*{Carry Lookahead Circuits}


\section*{The 74182 Carry Lookahead Unit}

74182 carry lookahead unit

- high speed carry lookahead generator
- used with 74181 to extend carry lookahead beyond 4 bits
- correctly handles the carry polarity of the 181
\[
\begin{aligned}
\mathrm{C}_{\mathrm{n}+\mathrm{x}}= & \overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{P} 0}+\overline{\mathrm{G} 0} \cdot \overline{\mathrm{C}_{\mathrm{n}}}} \\
= & \overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{P0}}} \cdot \overline{\overline{\mathrm{G} 0} \cdot} \cdot \overline{\mathrm{C}_{\mathrm{n}}} \\
= & (\mathrm{G} 0+\mathrm{P} 0) \cdot\left(\mathrm{G} 0+\mathrm{C}_{\mathrm{n}}\right)=\mathrm{G} 0+\mathrm{P} 0 \mathrm{C}_{\mathrm{n}} \\
>\mathrm{C}_{4}= & \mathrm{G}_{3: 0}+\mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{n}} \\
\mathrm{C}_{\mathrm{n}+\mathrm{y}}= & \mathrm{C}_{8}=\mathrm{G}_{7: 4}+\mathrm{P}_{7: 4} \mathrm{G}_{3: 0}+\mathrm{P}_{7: 4} \mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{i}, 0}=\mathrm{G}_{7: 0}+\mathrm{P}_{7: 0} \mathrm{C}_{\mathrm{n}} \\
\mathrm{C}_{\mathrm{n}+\mathrm{z}}= & \mathrm{C}_{12}=\mathrm{G}_{11: 8}+\mathrm{P}_{11: 8} \mathrm{G}_{7: 4}+\mathrm{P}_{11: 8} \mathrm{P}_{7: 4} \mathrm{G}_{3: 0}+\mathrm{P}_{11: 8} \mathrm{P}_{7: 4} \mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{n}} \\
& =\mathrm{G}_{11: 0}+\mathrm{P}_{11: 0} \mathrm{C}_{\mathrm{n}}
\end{aligned}
\]

\section*{Block Generate and Propagate}

G and \(P\) can be computed for groups of bits (instead of just for individual bits). This allows us to choose the maximum fan-in we want for our logic gates and then build a hierarchical carry chain using these equations:
\[
\begin{aligned}
& C_{J+1}=G_{I J}+P_{I J} C_{I} \\
& G_{I K}=G_{J+1, K}+P_{J+1, K} G_{I J} \\
& P_{I K}=P_{I J} P_{J+1, K}
\end{aligned}
\]
\[
\text { where } \mathrm{I}<\mathrm{J} \text { and } \mathrm{J}+1<\mathrm{K}
\]


Hierarchical building block


\section*{8-bit CLA (P/G generation)}


\section*{8-bit CLA (carry generation)}


\section*{8-bit CLA (complete)}


\section*{Unsigned Multiplication}


Multiplying N -bit number by M -bit number gives ( \(\mathrm{N}+\mathrm{M}\) )-bit result
Easy part: forming partial products (just an AND gate since \(B_{1}\) is either 0 or 1 )
Hard part: adding M N-bit partial products

\section*{Combinational Multiplier (unsigned)}


\section*{Combinational Multiplier (signed!)}
\begin{tabular}{llllll} 
& & X3 & X2 & X1 & X0 \\
& & Y3 & \(Y 2\) & \(Y 1\) & \(Y 0\)
\end{tabular}


\section*{2's Complement Multiplication \\ (Baugh-Wooley)}

Step 1: two's complement operands so high order bit is \(-2^{\mathrm{N}-1}\). Must sign extend partial products and subtract the last one
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \[
\begin{array}{r}
\text { X3 } \\
* \quad Y 3
\end{array}
\] & \[
\begin{aligned}
& \text { X2 } \\
& \text { Y2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { X1 } \\
& \text { Y1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { X0 } \\
& \text { Y0 }
\end{aligned}
\] \\
\hline X3Y0 & X3Y0 & X3Y0 & X3Y0 & X3Y0 & X2Y0 & X1Y0 & X0Y0 \\
\hline + X3Y1 & X3Y1 & X3Y1 & X3Y1 & X2Y1 & X1Y1 & X0Y1 & \\
\hline + X3Y2 & X3Y2 & X3Y2 & X2Y2 & X1Y2 & X0Y2 & & \\
\hline - X3Y3 & X3Y3 & X2Y3 & X1Y3 & X0Y3 & & & \\
\hline Z7 & Z6 & Z5 & Z4 & Z3 & Z2 & Z1 & Z0 \\
\hline
\end{tabular}

Step 2: don't want all those extra additions, so add a carefully chosen constant, remembering to subtract it at the end. Convert subtraction into add of (complement + 1).
```

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0

+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+
+ \overline{X3Y3}\overline{X3Y3}}\overline{\textrm{X2Y}}\overline{\textrm{X1Y3}}\overline{\textrm{XXY3}
+
+ 1
- 1

```

Step 3: add the ones to the partial products and propagate the carries. All the sign extension bits go away!
```

+ \overline{XY1 X2Y1 X1Y1 X0Y1 X0Y0}
+ X3Y1 X2Y1 X1Y1 X0Y1
+ \overline{X2Y2 X1Y2 X0Y2 X0Y2}
+ X3Y3 \overline{X2Y3}\overline{\textrm{X1Y}}\overline{\textrm{X0Y3}}
+ 1
- 1 1 1 1 1

```

Step 4: finish computing the constants...
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \(\overline{\mathrm{X} 3 \mathrm{Y} 0}\) & X2Y0 & X1Y0 & X0Y0 \\
\hline + & & & X3Y1 & X2Y1 & X1Y1 & X0Y1 & \\
\hline + & & \(\overline{\mathrm{X} 2 \mathrm{Y} 2}\) & X1Y2 & X0Y2 & X0Y2 & & \\
\hline + & X3Y3 & \(\overline{\mathrm{X} 2 \mathrm{Y}}\) & X1Y3 & X0Y3 & & & \\
\hline + & 1 & & 1 & & & & \\
\hline
\end{tabular}

Result: multiplying 2's complement operands takes just about same amount of hardware as multiplying unsigned operands!

\section*{Baugh Wooley Formulation - The Math}
no insight required
Assuming X and Y are 4-bit twos complement numbers:
\[
X=-2^{3} x_{3}+\sum_{i=0}^{2} x_{i} 2^{i} \quad Y=-2^{3} y_{3}+\sum_{i=0}^{2} y_{i} 2^{i}
\]

The product of \(X\) and \(Y\) is:
\[
X Y=x_{3} y_{3} 2^{6}-\sum_{i=0}^{2} x_{i} y_{3} 2^{i+3}-\sum_{i=0}^{2} x_{3} y_{j} 2^{j+3}+\sum_{i=0}^{2} \sum_{j=0}^{2} x_{i} y_{j} i^{2+j}
\]

For twos complement, the following is true:
\[
-\Sigma x_{i=0}^{2}=-2^{4}+\sum x_{i=0}^{2 i}+1
\]

The product then becomes:
\[
\begin{aligned}
& X Y=x_{3} y_{3} 2^{6}+\sum_{i=0}^{2} x_{i} y_{3} 2^{i+3}+2^{3}-2^{6}+{ }^{2} \sum_{i=0}^{2} x_{3} y_{j} \mathrm{j}^{j+3}+2^{3}-2^{6}{ }_{i=0}^{2} \sum_{i=0}^{2} \Sigma x_{i} y_{j} i^{i+j} \\
& =x_{3} y_{3} 2^{6}+\sum_{i=0}^{2} \sum x_{i} y_{3} 2^{i+3}+\sum_{j=0}^{2} \sum x_{3} y_{j} \mathrm{p}^{j+3}+\sum_{i=0}^{2} \sum_{i=0}^{2} x_{i} y_{j} y^{i+j}+2^{4}-2^{7} \\
& =-2^{7}+x_{3} y_{3} 2^{6}+\left(\bar{x}_{2} y_{3}+\bar{x}_{3} y_{2}\right) 2^{5}+\left(x_{1} y_{3}+\bar{x}_{3} y_{1}+x_{2} y_{2}+1\right) 2^{4} \\
& +\left(\bar{x}_{0} y_{3}+\bar{x}_{3} y_{0}+x_{1} y_{2}+x_{2} y_{1}\right) 2^{3}+\left(x_{0} y_{2}+x_{1} y_{1}+x_{2} y_{0}\right) 2^{21} \\
& +\left(x_{0} y_{1}+x_{1} y_{0}\right) 2^{1}+\left(x_{0} y_{0}\right) 2^{0}
\end{aligned}
\]

\section*{2's Complement Multiplication}


\section*{Multiplication in Verilog}

You can use the "*" operator to multiply two numbers:
```

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

```

If you want Verilog to treat your operands as signed two's complement numbers, add the keyword signed to your wire or reg declaration:
```

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multip7ication!

```

Remember: unlike addition and subtraction, you need different circuitry if your multiplication operands are signed vs. unsigned. Same is true of the >>> (arithmetic right shift) operator. To get signed operations all operands must be signed.

To make a signed constant: 10'sh37C

\section*{Artix-7 Details}

\section*{Artix-7 FPGA Feature Summary}

Table 4: Artix-7 FPGA Feature Summary by Device
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Logic Cells} & \multicolumn{2}{|l|}{Configurable Logic Blocks (CLBs)} & \multirow[b]{2}{*}{DSP48E1 Slices \({ }^{(2)}\)} & \multicolumn{3}{|l|}{Block RAM Blocks \({ }^{(3)}\)} & \multirow[b]{2}{*}{CMTs \({ }^{(4)}\)} & \multirow[b]{2}{*}{PCle \({ }^{(5)}\)} & \multirow[b]{2}{*}{GTPs} & \multirow[b]{2}{*}{\begin{tabular}{l}
XADC \\
Blocks
\end{tabular}} & \multirow[b]{2}{*}{Total I/O Banks \({ }^{(6)}\)} & \multirow[b]{2}{*}{\[
\underset{\text { //O(7) }}{\text { Max User }}
\]} \\
\hline & & Slices \({ }^{(1)}\) & \[
\begin{gathered}
\text { Max } \\
\text { Distributed } \\
\text { RAM (Kb) }
\end{gathered}
\] & & 18 Kb & 36 Kb & \[
\begin{aligned}
& \operatorname{Max} \\
& (\mathbf{K b})
\end{aligned}
\] & & & & & & \\
\hline XC7A12T & 12,800 & 2,000 & 171 & 40 & 40 & 20 & 720 & 3 & 1 & 2 & 1 & 3 & 150 \\
\hline XC7A15T & 16,640 & 2,600 & 200 & 45 & 50 & 25 & 900 & 5 & 1 & 4 & 1 & 5 & 250 \\
\hline XC7A25T & 23,360 & 3,650 & 313 & 80 & 90 & 45 & 1,620 & 3 & 1 & 4 & 1 & 3 & 150 \\
\hline XC7A35T & 33,280 & 5,200 & 400 & 90 & 100 & 50 & 1,800 & 5 & 1 & 4 & 1 & 5 & 250 \\
\hline XC7A50T & 52,160 & 8,150 & 600 & 120 & 150 & 75 & 2,700 & 5 & 1 & 4 & 1 & 5 & 250 \\
\hline XC7A75T & 75,520 & 11,800 & 892 & 180 & 210 & 105 & 3,780 & 6 & 1 & 8 & 1 & 6 & 300 \\
\hline XC7A100T & 101,440 & 15,850 & 1,188 & 240 & 270 & 135 & 4,860 & 6 & 1 & 8 & 1 & 6 & 300 \\
\hline XC7A200T & 215,360 & 33,650 & 2,888 & 740 & 730 & 365 & 13,140 & 10 & 1 & 16 & 1 & 10 & 500 \\
\hline
\end{tabular}

\section*{Notes:}
1. Each 7 series FPGA slice contains four LUTs and eight.flip-flops; only some slices can use their LUTs as distributed RAM or SRLs.
2. Each DSP slice contains a pre-adder, an \(25 \times 18\) multiplier, "an adder, and an accumulator.
3. Block RAMs are fundamentally 36 Kb in sízé"' "éach" blöčk can also be used as two independent 18 Kb blocks.
4. Each CMT contains one MMCM and one PLL.
5. Artix-7 FPGA Interface Blocks for PCI Express support up to x 4 Gen 2.
6. Does not include configuration Bank 0 .
7. This number does not include GTP transceivers.

Multiplier tpd \(=3.97 \mathrm{~ns}\)

\section*{Slice Overview}


UG479_c1_21_032111

\section*{7 Series DSP48E1 Slice}

E. XILINX 》 ALL PROGRAMMABLE.

\section*{Sequential Multiplier}

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N -bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:

```

Init: P\leftarrow0, load A and B
Repeat M times {
P}\leftarrowP+(\mp@subsup{B}{LSB}{}==1 ? A : 0
shift P/B right one bit
}
Done: (N+M)-bit result in P/B

```

\section*{Bit-Serial Multiplication}

```

Init: P = 0; Load A,B
Repeat M times {
Repeat N times {
shift A,P:
Amsb = Alsb
Pmsb = Plsb + Alsb*Blsb + C/0
}
shift P,B: Pmsb = C, Bmsb = Plsb
}
(N+M)-bit result in P/B

```

\section*{Combinational Multiplier (unsigned)}


\section*{Useful building block: Carry-Save Adder}

Good for pipelining: delay through each partial product (except the last) is just \(t_{\text {PD,AND }}+t_{\text {PD,FA }}\).
No carry propagation time!


\section*{Wallace Tree Multiplier}

This is called a 3:2 counter by multiplier hackers: counts

\(\mathrm{O}\left(\log _{1.5} \mathrm{M}\right)\)

Higher fan-in adders can be used to further reduce delays for large M.

4:2 compressors and 5:3 counters are popular building blocks.

\section*{Artix-7 FPGA 3-2 Compressor}


UG479_c2_02_072210

\section*{Wallace Tree * Four Bit Multiplier}


Figure 11-35 Wallace tree for four-bit multiplier.
*Digital Integrated Circuits
J Rabaey, A Chandrakasan, B Nikolic

\section*{Multiplication by a constant}
- If one of the operands is a constant, make it the multiplier ( \(B\) in the earlier examples). For each " 1 " bit in the constant we get a partial product (PP) - may be noticeably fewer PPs than in the general case.
- For example, in general multiplying two 4-bit operands generates four PPs (3 rows of full adders). If the multiplier is say, 12 ( \(4^{\prime}\) b1100), then there are only two PPs: \(8^{*} \mathrm{~A}+4^{*} \mathrm{~A}\) (only 1 row of full adders).
- But lots of " 1 "s means lots of PPs... can we improve on this?
- If we allow ourselves to subtract PPs as well as adding them (the hardware cost is virtually the same), we can re-encode arbitrarily long contiguous runs of " 1 " bits in the multiplier to produce just two PPs.
\[
\ldots 011110 \ldots=. . .100000 \ldots-. . .000010 \ldots=. . .01000 \overline{10} \ldots
\]
where \(\overline{1}\) indicates subtracting a PP instead of adding it. Thus we've reencoded the multiplier using 1,0,-1 digits - aka canonical signed digit greatly reducing the number of additions required.

\section*{Booth Recoding: Higher-radix mult.}

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!


\section*{Booth recoding}

On-the-fly canonical signed digit encoding!


A"1" in this bit means the previous stage needed to add \(4 * A\). Since this stage is shifted by 2 bits with respect to the previous stage, adding \(4^{*} \mathrm{~A}\) in the previous stage is like adding A in this stage!

\section*{Summary}
- Performance of arithmetic blocks dictate the performance of a digital system
- Architectural and logic transformations can enable significant speed up (e.g., adder delay from \(O(N)\) to \(O\left(\log _{2}(N)\right)\)
- Similar concepts and formulation can be applied at the system level
- Timing analysis is tricky: watch out for false paths!
- Area-Delay trade-offs (serial vs. parallel implementations)

\section*{Lab 4 Car Alarm - Design Approach}
- Read lab/specifications carefully, use reasonable interpretation
- Use modular design - don't put everything into lab4_main.sv
- Design the FSM!
- Define the inputs
- Define the outputs
- Transition rules
- Logical modules:
- fsm.v
- timer.v // the hardest module!!
- siren.v
- fuel_pump.v
- Run simulation on each module!
- Use hex display: show state and time
- Use logic analyzer in Vivado

\section*{Car Alarm - Inputs \& Outputs}

Inputs:
- passenger door switch
- driver door switch
- ignition switch
- hidden switch
- brake pedal switch


Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

\section*{Car Alarm - CMOS Implementation}

- Design Specs
- Operating voltage 8-18VDC
- Operating temp: -10C +65C
- Attitude: sea level
- Shock/Vibration
- Notes
- Protected against 24V power surges
- CMOS implementation
- CMOS inputs protected against 200V noise spikes
- On state DC current <10ma
- Include T_PASSENGER_DELAY and Fuel Pump Disable
- System disabled (cloaked) when being serviced.

\section*{Debugging Hints - Lab 4}
- Add parameter for fast debug mode for the one hz clock. This will allow for viewing signals in simulation or ILA without waiting for 25 million clock cycles. Avoids recomplilations.
module lab4_main.sv
timer \#(.DIVISOR(25_000_000) my_timer(...)
//
module timer \#(parameter DIVISOR=3) (input clk_25mhz, ....
// defaults to 3 clocks cycles
endmodule

\section*{Debugging Hints - Lab 4}
- Implement a speedy debug mode for the one hz clock. This will allow for viewing signals on the ILA or simulation without waiting for 25 million clock cycles. Avoids recomplilations.
```

assign speedy = sw[6];
always_ff @ (posedge clk) begin
if (count == (speedy ? 3 : 24_999_999)) count <= 0;
else count <= count +1;
end
assign one_hz = (count == (speedy ? 3 : 24_999_999)) ;
... Or use parameters . . .
module timer \#(parameter DIVISOR=3) (input clk_25mhz,
// defaults to 3 clocks cycles

```

\section*{One Hz Ticks in Simlulation}

To create a one hz tick, use the following in the Verilog test fixture:
```

always \#5 clk=!clk;
always begin
\#5 tick = 1;
\#10 tick = 0;
\#15;
end
initial begin
// Initialize Inputs
clk = 0;
tick = 0; ...

```


\section*{Edge Detection}

logic signal_delayed;
always_ff @(posedge clk)
signal_delayed <= signal;
assign rising_edge = signal \& ! !signal_delayed; assign falling_edge = !signal \&\& signal_delayed;

\section*{Vivado ILA}
- Integrated Logic Analyzer (ILA) IP core
- logic analyzer core that can be used to monitor the internal signals of a design
- includes many advanced features of modern logic analyzers
- Boolean trigger equations,
- edge transition triggers ...
- no physical probes to hook up!
- Bit file must be loaded on target device. Not simulation.

\section*{Student Comments}
- "All very reasonable except for lab 4, Car Alarm. Total pain in the ass.
- "The labs were incredibly useful, interesting, and helpful for learning. Lab 4 (car alarm) is long and difficult, but overall the labs are not unreasonable."
```

module stage_1 (input clk_in,
input rst_in,
input[7:0] s1_in,
output logic [8:0] s1_out
);
//Generate two options: (See LPset 3)

$$
y_{n 1}=x_{n} \oplus x_{n-1} \text { for } 7 \geq n \geq 1 \quad y_{n 2}=\overline{\left(x_{n} \oplus x_{n-1}\right)}
$$

```
//Identify transitions in each:
\[
t_{n-1}=y_{n} \oplus y_{n-1} \text { for } 7 \geq n \geq 1
\]
//Tally the transitions in each situation:
\[
\operatorname{assign} \text { sum }=t_{0}+t_{1} \ldots t_{8}
\]
//Based on tallies, choose one with fewer (or equal) and //produce correct output
assign s1_out = (sum1<=sum2)? ...
endmodule

\section*{Cyclic redundancy check - CRC}

\section*{CRC16 (x16 + x15 + x2 + 1)}

- Each " \(r\) " is a register, all clocked with a common clock. Common clock not shown
- As shown, for register r15, the output is r[15] and the input is the sum of \(r[14], r[15]\) and data input \(x 16\), etc
- The small round circles with the plus sign are adders implemented with XOR gates.
- Initialize r to 16 'hFFFF at start

\section*{CRC Solution}
module lpset6(
input clock,
input start
input data,
output done,
output reg [15:0] \(r\)
);
parameter IDLE=0;
parameter CRC_CALC=1;
wire x 16 = data;
reg state=0;
reg [5:0] counter=0; //my counter
always @ (posedge clock) begin case (state)

IDLE: begin
end

CRC_CALC: begin
end
endcase
end

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name & Value & & 560 ns & 1570 ns & 580 ns & | 590 ns & & 1600 \\
\hline 16 done & 0 & & & & & & & \\
\hline - 78 r [15:0] & fiff & 40 O & \(0 \times 80\) & 20 \(\times 00\) & po & fff & & \\
\hline 16 clock & & & & & & & & \\
\hline 18 start & 0 & & & & & & & \\
\hline 18.8 data & 0 & & & & & & & \\
\hline 1 - input_data[47:0] & 000000000 & 40000000 & \(00000 \times 800000\) & 200000 & 000000000 & \$000 & & \\
\hline  & 000000000 & 000000000 & 00000... \(\times 0000000\) & 900000... \(\times 0000000\) & 200000... 00000000 & 20000000 & 0000000000 & \\
\hline - -6 counter[5:0] & 47 & 2 & & & \(\oint\) & 47 & & \\
\hline 16 state & 0 & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
assign done \(=(\) counter \(==0)\);
endmodule```

