6.111 Fall 2019

Pipelining & Verilog

« Division

Latency & Throughput

* Pipelining to increase throughput
* Verilog Math Functions
Simulations

Lecture 9

6.111 Fall 2019

Table 7-8: Supported Expressions

Expression Symbol Status

Concatenation {1 Supported

Replication i Supported

Arithmehic *, =, 108 Supported

Division) Supported anly if the secand
operand is a power of 2, or both
operands are constant,

Modulus % Supported only if second operand

is & power of 2.

Addition - Supported
Subtraction Supparted
Multiplication Supported
Power e Supported:

* Both operands are constants,
with the second operand being
non-negative.

» If the first operand is a 2, then
the second operand can be a
varable,

* Vivado synthesis does not
support the real data type. Any
combination of operands that
results in a real type causes an
error.

» The values X (unknown) and 7
(high impedance) are not
allowead.

Relational > %, rm, 4 Supported
Logical Negation ! Supported
Logical AND Bel Supported

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf

Lecture 9

Sequential Divider

Assume the Dividend (A) and the divisor (B) have N bits. If we only
want to invest in a single N-bit adder, we can build a sequential circuit
that processes a single subtraction at a time and then cycle the circuit
N times. This circuit works on unsigned operands; for signed
operands one can remember the signs, make operands positive, then
correct sign of result.

Init: P«<0O, load A and B
Repeat N times {
shift P/A left one bit

B | temp = P-B

it (temp >= 0)

6.111 Fall 2019

N+l {P—temp, A g1}
else A <0
N+1 }
207~ s Done: Q in A, R in P
Lecture 9

Sequential Divider

P A P-B 7/3 0111/11 B=0011
0000 | 0111 Initial value
0000 | 1110 Shift
0000 -3 Subtract N [
0000 | 1110 Restore, set Aj;, =0
0001 | 1100 Shift i @ s
0001 -2 [Subtract
0001 | 1100 Restore, set A, =0 =
0011 | 1000 Shift ég;;;tpﬁot'i m:;;ad{ A and B
0011 0 |subtract shift P/A left one bit
0000 | 1001 Subtact, set A, =1 :impthP—E_ o
0001 | 0010 Shift {get:’mp' Dty
0001 -2 Subtract else A0
0001 | 0010 Restore, set Aj;p =0 }

R Q Done: Q in A, R in P

6.111 Fall 2019

Lecture 9

Sequential Divider

0001/0000

0000 | 0001 Initial value

0000 | 0010 Shift

0000 Subtract

0000 | 0011 Subtact, set Aj;p =1

0000 | 0110 Shift

0000 [subtract

0000 | 0111 Subtact, set Ay =1

0000 | 1110 Shift

0000 [subtract

0000 | 1111 Subtact, set A =1

0000 | 1110 Shift

0000 Subtract

0000 | 1111 Subtact, set A, =1
R Q

6.111 Fall 2019

Lecture 9

Init: P<0, load A and B
Repeat N times {
shift P/A left one bit
temp = P-B
if (temp >= 0)
{P<temp, A <1}
else A <0
}
Done: Q in A, R in P

Verilog divider.v

// The divider module divides one number by another. It

// produces a signal named "ready" when the quotient output
// is ready, and takes a signal named "start" to indicate

// the the input dividend and divider is ready.

// sign -- 0 for unsigned, 1 for twos complement

// It uses a simple restoring divide algorithm.
// http:/ /en.wikipedia.org/wiki/Division_(digital,

module divider #(parameter WIDTH = 8)
(input clk, sign, start,
input [WIDTH-1:0] dividend,
input [WIDTH-1:0] divider,
output reg [WIDTH-1:0] quotient,
output [WIDTH-1:0] remainder;
output ready);

reg [WIDTH-1:0] quotient_temp;
reg [WIDTH*2-1:0] dividend_copy, divider_copy, diff;

reg negative_output;

wire [WIDTH-1:0] remainder = (‘negative_output) ?

dividend_copy[WIDTH-1:0] : ~dividend_copy[WIDTH-1:0] + 1'b1;

reg [5:0] bit;
reg del_ready = 1;
wire ready = (bit) & ~del_ready;

wire [WIDTH-2:0] zeros = 0;
initial bit = 0;
initial negative_output = 0;

6.111 Fall 2019

ing_division

always @(posedge clk) begin
del_ready <= Ibit;
if(start) begin

bit = WIDTH;
quotient = 0;
quotient_temp = 0;
dividend_copy = (!sign | | !dividend[WIDTH-1]) ?
{1'b0,zeros,dividend :
{1'b0,zeros,~dividend + 1'b1};
divider_copy = (Isign | | !divider[WIDTH-1]) ?
{1'b0,divider,zeros} :
{1'b0,~divider + 1'b1,zeros};

negative_output = sign &&
((divider[WIDTH-1] && !dividend[WIDTH-1])
| | ({divider[WIDTH-1] && dividend[WIDTH-1]));
end
else if (bit > 0) begin
diff = dividend_copy - divider_copy;
quotient_temp = quotient_temp << 1;
i IdifffWIDTH*2-1]) begin
dividend_copy = diff:
quotient_temp[0] = 1'd1;
end
quotient = (Inegative_output) ?
quotient_temp :
~quotient_temp + 1'b1;
divider_copy = divider_copy >> 1;
bit = bit - 1'b1;
end
end
endmodule

L. Williams MIT ‘13

Lecture 9

Math & Other Functions in IP Catalog

Flow Navigator -
~ PROJECT MANAGER
£ Setings
Add Sources
Language Templates

T P Catalog

¥ [P INTEGRATOR
Create Block Design

v SWULATION

Run Simulation

~ RTL AMALYSIS
> Open Elaborated Design

v SYNTHESIS

P Run Synthesis

6.111 Fall 2019

Wide selection of math functions available

PROJECT MANAGER - 1ab_sol 7
P Catalog 2 0
Cores
Q = s ¥ < | &
Search
Name a4 Status License VLNV
Mt Functions ~
Adders & Sublracters
» = Comversions
CORDIC
Dedders
¥ Dhider Generator AN4-Stream Producton included xilin comuipidiv_gens 1
» % Fioating Point
Musttiphers
Square Root
Trig Functions v
< »
Dotaits.
Path CoMilinuivado/2019.1/datal
Humber of IPs 634 W
Lecture 9 7

Divider Generator

~ PROJECT MANAGER
& semngs
Qa x & + B =

Add Seurces

@ 2 labkit + -~

Language Temptates : 5
b ® ciider cli_wiz_0_:

T 1P Catalog @ aisplay: ciaplay_Bhex

® ngal inga ¥

< ?
Hisrarchy

~ P INTEGRATOR

Create Blotk Design

Repasitory Pr 3 X
User Repository L
v SIMULATION Path [
Run Simutaton Hismhae of IPa A v
>
General Ps

v RTL ANALYSIS

5 r 1P Catalog £
Cores riertace
Qi = ¢ [F = |
Gearch dvider {2 matches)
Name ~1 nod Stalus License
Wivado Repository
Mzt Functions
Dniders
Drader Generator Ag4-Syeam Froducion Included
F:
Detaits
Pah, SN VAd2018. 1)
Numbar of IPs 634

Mumber of interfaces. 348

Select Divider

https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-

gen.pdf

6.111 Fall 2019

Lecture 9

IP Catalog Divider

Divider Generator (5.1)

@ Documentation - IP Location (C Swilch to Defaults

1P Symbol Implemantation Details

| Show disabled ports

Compenent Name div_gen_0

Channel Settings

Coregen Divider

Divider Generator (5.1)

© Documentation - IP Location (' Switch to Defaulls

1P Symbol

i Show disabled ports

F— S5_ANIS_DMSOR

Componant Mame di_gen_0

Cbeks pas DMishon ‘Q Chose maximum for

AXI4-Stream Options. application

TUSER Width 1

6.111 Fall 2019

Lecture 9

Algorithm Type Radix2 v
. Operand Sign Signed ~
E— 5_A0S_DWVISOR
= p s_axis_dmisor_tdata[7:0] Dividend Channel
» M_AXS_DOUT
L] m_axis_dout_tdata[23.0] b = PR E_ i
> | Has TLAST Has TUSER
W s_awis_divisor_fvalid 4

Chose minimum
number for application

+ S_AXIS_DIVIDEND >
aclk m_axis_dout_tvald b
Divisor Channel /
Divisor Wiath B
Data valid Has TLAST Has TUSER
TUSER Width 1

o b 5 suis. doison.tdatar-0) Flow Conirol Non Blocking
LIS M_&dS_DOUT — E Optimize Goal Performance
{4 m_axis_dout_tdata[23.0] b =
{ » > |
= P s_axis_divisor_fvalid 4 - Output TLAST Behavior | Null
2+ 5_AMS_DVIDEND > i
- aclk m_axis_dout_tvalid » ~ Latency Options
; Latency Configuration Automalic v
= Latency 20

6.111 Fall 2019

Control Signals

Lecture 9

10

Performance Metrics for Circuits

Circuit Latency (L):

Circuit Throughput (T):

6.111 Fall 2019

time between arrival of new input and generation of

corresponding output.

For combinational circuits this is just typ.

Rate at which new outputs appear.

For combinational circuits this is just 1/t or 1/L.

Lecture 9

11

Latency dependent on
dividend width +
fractioanl reminder width

Coregen Divider Latency

Table 2-1: Latency of Radix-2 Solution Based on Divider Parameters
Signed Fractional . Clocks Per Division . Fully Pipelined I.ateru:yrm
FALSE FALSE 1 M+A+2
FALSE FALSE >1 M+A+3
FALSE TRUE 1 M+F+A+2
FALSE TRUE >1 M+F+A+3
TRUE FALSE 1 M+A+4
TRUE FALSE >1 M+A+5
TRUE TRUE 1 M+F+A+4
TRUE TRUE >1 M+F+A+5

Notes:

1. M = Dividend and Quotient Width, F = Fractional Width, A = total Latency of AXI interfaces.

6.111 Fall 2019

Lecture 9

12

Performance of Combinational Circuits

For combinational logic:
L = tpp,
T = 1tpp,

We can't get the answer faster, but
are we making effective use of our
hardware at all times?

Retiming: A very useful transform

Retiming is the action of moving registers around in the system
= Registers have to be moved from ALL inputs to ALL outputs or vice versa

—E 1 —

Cutset retiming: A cutset intersects the edges, such that this would result in two disjoint

X P4 partitions of the edges being cut. To retime, delays are moved from the ingoing to the
outgoing edges or vice versa.
FOX) X000 2
G(X) XX 2 -
POX) X002
\) N
F & G are “idle”, jl_Jst holding their outputs stable Benefits of retiming: O\ :
while H performs its computation « Modify critical path delay s
« Reduce total number of registers A
6.111 Fall 2019 Lecture 9 13 6.111 Fall 2019 Lecture 9 14
Retiming Combinational Circuits Pipeline diagrams
13 M M M ”
aka “Pipelining
s Clock cycle
i i+1 i+2 i+3
15 4 Input X Xis1 Kivz Xis3
(@]
T g
— »
X 25 P(X) ﬁ %i P(Xi2) .GE) F Reg FOG) | FOG) | F(2)
— ©
j=1 G Reg G(X) |G | G(Xir2)
o
20
— H Reg HX) | HXi) | H(Xi2)
Assuming ideal registers: t.. =25
i€ thp =0, tegryp =0 CHK_
L =45 o L = 2%t =50 The results associated with a particular set of input data
T = 1/45 T=1/tg = 1/25 moves diagonally through the diagram, progressing
through one pipeline stage each clock cycle.
Lecture 9 15 6.111 Fall 2019 Lecture 9 16

6.111 Fall 2019

Pipeline Conventions

DEFINITION:
a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K
registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an 0-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its
OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to cover
propagation over combinational paths PLUS (input) register t,p, PLUS (output)
register tgeup-

The LATENCY of a K-pipeline is K times the period of the
clock common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of
the clock.

6.111 Fall 2019 Lecture 9 17

lll-formed pipelines

Consider a BAD job of pipelining:

()

x—’:\\E ; 2

)
¥ B —/
For what value of K is the following circuit a K-Pipeline? none

Problem:

Successive inputs get mixed: e.g., B(A(Xi,,), Y;). This
happened because some paths from inputs to outputs have
2 registers, and some have only 1!

This CAN'T HAPPEN on a well-formed K pipeline!

6.111 Fall 2019 Lecture 9

A pipelining methodology

Step 1: STRATEGY:

Add a register on each output. Focus your attention on placing
pipelining registers around the
slowest circuit elements

Step 2:
ep (BOTTLENECKS).

Add another register on each
output. Draw a cut-set contour
that includes all the new registers -———

e
and some part of the circuit. ! -
A B {P © S
ans| T3 ns[}{ |8 ns \
Mol
F

Retime by moving regs from all
outputs to all inputs of cut-set.

Ll

Repeat until satisfied with T.

6.111 Fall 2019 Lecture 9 19

Pipeline Example

OBSERVATIONS:

2 3
X—=1 A D U Lo :
2 « 1-pipeline improves neither
2 -
Y

‘Di»
LorT.
3 « T improved by breaking
4H_> B long combinational paths,
! allowing faster clock.

* Too many stages cost L,
don’t improve T.

LATENCY | THROUGHPUT
O-pine: » Back-to-back registers are
-pipe. 4 1/4 often required to keep
— pipeline well-formed.
L-pipe: 4 1/4
2-pipe: 4 112
3-pipe: 6 1/2

6.111 Fall 2019 Lecture 9

Pipeline Example - Verilog

Lab 3 Pong

pixel « G = game logic 8ns tpd

M G |— o F |—
8 \% 9

« C = draw fancy object puck, lots
of multiplies with 9ns tpd

hcount, intermediate » System clock 65mhz =
vcgtli:nt, wires 15ns period — opps

No pipeline
assign y = G(X); // logic for y —
assign pixel = C(y) // logic for pixel

Y Y2)
X G E ~ pixel
' 9

clock clock

reg [N:0] x,y;
reg [23:0] pixel
always @ * begin
y=G(x);
pixel = C(y);
end

Pipeline Latency = 2 clock cyles!
always @(posedge clock) begin Implica):ions? 4
y2 <= G(X); // pipeline y
pixel <= C(y2) // pipeline pixel
end
6.111 Fall 2019 Lecture 9

Pipeline Example — Lab 3

/I calculate rom address and read the location
assign image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
image_rom rom1(.clka(pixel_clk_in), .addra(image_addr), .douta(image_bits));

red_coe rcm (.clka(pixel_clk_in), .addra(image_bits), .douta(red_mapped));

always @ (posedge pixel_clk) begin
if ((hcount_in >= x && hcount_in < (x_in+WIDTH)) &&. (vcount_in >=y_in && vcount_in < (y_in+HEIGHT)))

pixel_out <= {red_mapped[7:4], red_mapped[7:4], red_mapped[7:4]}; // greyscale

else pixel_out <= 0;

end
Image rom Color map rom Latency =5 clock cyles!
Implications?
C I I >|;|_. pixel_out
AllA
clock clock clock
physnc
pvysnc
— pblank
6.111 Fall 2019 Lecture 9

22

6.111 Fall 2019 Lecture 9

Pipeline Example — Lab 3

/I calculate rom address and read the location
assign image_addr = (hcount_in-x_in) + (vcount_in-y_in) * WIDTH;
image_rom rom1(.clka(pixel_clk_in), .addra(image_addr), .douta(image_bits));

red_coe rcm (.clka(pixel_clk_in), .addra(image_bits), .douta(red_mapped));

always @ (posedge pixel_clk) begin
if ((hcount_in >= x && hcount_in < (x_in+WIDTH)) &&. (vcount_in >=y_in && vcount_in < (y_in+HEIGHT)))

pixel_out <= {red_mapped[7:4], red_mapped[7:4], red_mapped[7:4]}; // greyscale

else pixel_out <= 0;
end

Image rom Color map rom Latency = 5 clock cyles!
Implications?
@_|;H;|_>|;|_' pier_OUI
clock clock clock

— w1
[H;H;Hj—[l——» pblank

6.111 Fall 2019 Lecture 9

24

Idea: split processing across several
clock cycles by dividing circuit into
pipeline stages separated by
registers that hold values passing
from one stage to the next.

6.111 Fall 2019

Increasing Throughput: Pipelining

an

pE

i
0
|

Throughput = 1/4tp ppinstead of 1/8tpp £a)

Lecture 9

How about to = 1/2tpp 2?

<+ =register

6.111 Fall 2019 Lecture 9

6.111 Fall 2019

History of Computational Fabrics

Discrete devices: relays, transistors (1940s-50s)
Discrete logic gates (1950s-60s)

Integrated circuits (1960s-70s)
O e.g. TTL packages: Data Book for 100’s of different parts

Gate Arrays (IBM 1970s)

O Transistors are pre-placed on the chip & Place and Route software
puts the chip together automatically — only program the interconnect
(mask programming)

Software Based Schemes (1970’s- present)
O Run instructions on a general purpose core
Programmable Logic (1980’s to present)

O A chip that be reprogrammed after it has been fabricated

o Examples: PALs, EPROM, EEPROM, PLDs, FPGAs

O Excellent support for mapping from Verilog

ASIC Design (1980'’s to present)
O Turn Verilog directly into layout using a library of standard cells
o Effective for high-volume and efficient use of silicon area

Lecture 9

Reconfigurable Logic

* Logic blocks

— To implement combinational
and sequential logic

e Interconnect

— Wires to connect inputs and
outputs to logic blocks

e 1/O blocks
— Special logic blocks at

periphery of device for
external connections

* Key questions:

— How to make logic blocks programmable?
(after chip has been fabbed!)

— What should the logic granularity be?

— How to make the wires programmable?
(after chip has been fabbed!)

— Specialized wiring structures for local
vs. long distance routes?

— How many wires per logic block?

Configuration

6.111 Fall 2019 Lecture 9

Outputs

Programmable Array Logic (PAL)

» Based on the fact that any combinational logic can be realized as
a sum-of-products

» PALs feature an array of AND-OR gates with programmable
interconnect

input
signals

OR array

output
signals

|
|
|
|
1
D_
|
|
1
programming of
product terms

6.111 Fall 2019 Lecture 9

VY

programming of
sum terms

29

RAM Based Field Programmable
Logic - FPGA
e e

e
e
T

1
I
1
I
1
T

I
8k

Programmable
Interconnect

ciczcs \
T
DIN SR £C]
o

1/0 Blocks (I0Bs)

L

pE R E b

pEE s b b

pE e

pEE s b b
SR E b
T L

e el e e e e el e e

ﬁ;’(ﬁﬂcﬁcﬂcﬂcﬁcﬂcﬁ Hed of e
RE

ksl

Configurable
Logic Blocks (CLBs)

pi=
gi=

Heo

6.111 Fall 2019 Lecture 9 30

FPGA RAM based Interconnect

n e

)

PSM PSM Singles
e I 1 e 1 e Doubles
I Rk
»
&
cLB cLe r cLe A -
|
S L < ! ’X/ o T
PSM PSM i
. Six Pass Transistors
— . — Pl : Per Switeh Matrix
_><)J 4 J ‘N\rll\\ T {4+ : Iﬂferrc,nn‘rfect :;mt
s | / s / S cs XB600
‘ 1 [[‘ [‘ : Programmable Switch Matrix (PSM)
B0

Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

6.111 Fall 2019 Lecture 9

Xilinx Interconnect Details

) (J
_4 > DOUBLE
- — g?ﬂ% }SINGLE
»___ DOUBLE
A LONG _Tl:l_ E
N e B e
—’\/\/I’\/\/—_L
: S - 4‘ DIREGT j___ I
%E% CLB =p
é}.& el }FEEDBACK
E naa Wires are not ideal!
ili LONG
il

- i
W Sy, N % ¥,

%

6.111 Fall 2019 Lecture 9 32

Design Flow - Mapping

» Technology Mapping: Schematic/HDL to Physical Logic units

» Compile functions into basic LUT-based groups (function of
target architecture)

Design Flow — Placement & Route

* Placement — assign logic location on a particular device

EEEE | -

....\H

NEEE |]

a
[
b
o™ el >] D7 Q
b - _ | Lut B m Routing — iterative process to connect CLB inputs/outputs and IOBs. Optimizes critical path
d Q — = Q delay — can take hours or days for large, dense designs
always @(posedge clock or negedge reset) lterate placement if timing
begin not met
if (! reset) . .
q <= 0; |:| I:l I:] Satisfy timing? - Generate
else Bitstream to config device
q <= (a&b&c)||(b&d); |:| I:I
end
Challenge! Cannot use full chip for reasonable speeds (wires are not ideal).
Typically no more than 50% utilization.
6.111 Fall 2019 Lecture 9 33 6.111 Fall 2019 Lecture 9 34
Simulation — Five Options . .
P ‘ Simulations
RTL Design
Flow Navigator A S8 PROJECT MANAGER - modulo_test
~ PROJECT MANAGER S . _— Uses the Verilog source code to model the behavior
£ Settings - Behavioral Simulation — | of the module under test. Neither gate delays nor
Q T =2 4+] o (Verity Design Behaves as Intended) interconnect delays are modeled. Behavioral model
Add Sources may not match that of the synthesized logic.

~ = Design Sources (2)

B T lat
ERgiRaC I emEats > @& labkit (1ab3_main.sv) (7)

F P Catalog @ synchronize (lab3_main.sv)
> Constraints (1)
~ |P INTECRATOR > Simulation Sources (2)

Create Block Design

Open Block Design Hierarchy | Libraries Compile Order
Generate Block Design
Source File Properties e mfe]
~ SIMULATION @ 1ab3_main.sv -]
Run Simulation ~

N

Run Behavioral Simulation

~ RTL AMALYSIS 11/modulo_testmodulo_test srcsls

N Run Post-Synthesis Functional Simulation
» OpenElabora Ny Run Post-Synthesis Timing Simulation P9 |I| w

Run Post-Implementation Functional Simulation

<

SYNTHESIS

N Run Post-Implementation Timing Simulation
P Run Synthesic ,
6.111 Fall 2019 Lecture 9

w
@

Synthesize

U

Synthesized netlist mapped to the FPGA device
Post Synthesis Simulation — | being targeted. Simulation includes some timing
information. But no interconnect delay.

Implement (Place and Route)

Can perform functional or timing simulation after
implementation. Timing simulation is the closest

Post Implementation Simulation

(Close to Emulating HW) emulation to actually downloading a design to a
device. Can ensure that the implemented design
meets functional and timing requirements
Debug the Design
Figure 1-1: Simulation Flow
6.111 Fall 2019 Lecture 9 36

Example: Verilog to FPGA

module adder64 (
input [63:0] a, b;
output [63:0] sum); —

* Synthesis
* Tech Map
* Place&Route

assign sum =a + b;
endmodule

64-bit Adder Example Virtex 11 — XC2V2000

6.111 Fall 2019 Lecture 9

How are FPGAs Used?

Logic Emulation

m Prototyping

O Ensemble of gate arrays used to emulate a
circuit to be manufactured

O Get more/better/faster debugging done than
with simulation

m Reconfigurable hardware

O One hardware block used to implement more
than one function

m Special-purpose computation engines
O Hardware dedicated to solving one problem
(or class of problems)

O Accelerators attached to general-purpose
computers (e.g., in a cell phone!)

FPGA-based Emulator
(courtesy of IKOS)

6.111 Fall 2019 Lecture 9 38

Summary

* FPGA provide a flexible platform for implementing digital
computing

« Arich set of macros and I/Os supported (multipliers, block
RAMS, ROMS, high-speed I/0)

» A wide range of applications from prototyping (to validate a
design before ASIC mapping) to high-performance spatial
computing

« Interconnects are a major bottleneck (physical design and
locality are important considerations)

6.111 Fall 2019 Lecture 9

Dashboard

S, - L - A Cshsoars ~

6.111 Fall 2019 Lecture 9 40

Loading Nexys4 Flash

1. Format a flash drive to have 1 fat32 partition

2. In vivado, click generate bitstream and afterwards do file->Export-
>Export_Bitstream_File to flash top-level directory

3. On the nexys 4, switch jumper JP1 to be on the USB/SD mode

4. Plug the usb stick into the nexys 4 while it's off and then power on. A
yellow LED will flash while the bitstream is being loaded. When it's
done, the green DONE led will turn on

5. You can remove the usb drive after your code is running

6.111 Fall 2019 Lecture 9

41

Test Bench

module sample_tb;

// Inputs module sample(

!] input clk,
logic clk; {input data_in,
logic data_in;

output [7:0] data_out
// Outputs ‘___________________________

wire [7:0] data_out;

| —

// Verilog

// Instantiate the Unit Under Test (UUT)
sample uut (
_clk(clk),
.data_in(data_in),
.data_out(data_out)

endmodule

)

always #5 clk = Iclk; // create a clock

initial begin | inputs must be initialized
// Initialize Inputs
clk = 0;

data_in = 0;

// Wait 100 ns for global reset to finish
#100;

// Add stimulus here

end

6.111 Fall 2019 Lecture 9 42

