

- Sampling theorem
- Undersampling, antialiasing
- FIR digital filters
- Quantization noise, oversampling
- OpAmps, DACs, ADCs

Thu/Fri: Lab 4 Checkoff Mon: email project teams

Handouts

- lecture slides,
- Lpset 8

CRC

03_01_02_03_03_0a

Cyclic redundancy check - CRC

Digital Representations of Analog Waveforms

Continuous time Continuous values

Discrete time
Discrete values

Discrete Time

Let's use an impulse train to sample a continuous-time function at a regular interval T:

6.111 Fall 2019

Lecture 10

Sampling Theorem

Let $x(t)$ be a band-limited signal, ie, $X(j \omega)=0$ for $|\omega|>\omega_{M}$. Then $x(t)$ is uniquely determined by its samples $x(n T), n=0, \pm 1, \pm 2, \ldots$, if

$$
\omega_{\mathrm{S}}>2 \omega_{\mathrm{M}} \quad \begin{aligned}
& 2 \omega_{\mathrm{M}} \text { is called the } \\
& \text { "Nyquist rate" and }
\end{aligned} \quad \begin{aligned}
& \omega_{\mathrm{s}} / 2 \text { the "Nyquist } \\
& \text { frequency" }
\end{aligned}
$$

where

$$
\omega_{\mathrm{s}}=\frac{2 \pi}{T}
$$

Given these samples, we can reconstruct $x(t)$ by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values, then passing the train through an ideal LPF with gain T and a cutoff frequency greater than ω_{M} and less than $\omega_{s}-\omega_{M}$.

Undersampling \rightarrow Aliasing

If $\omega_{s} \leq 2 \omega_{M}$ there's an overlap of frequencies between one image and its neighbors and we discover that those overlaps introduce additional frequency content in the sampled signal, a phenomenon called aliasing.

here are now tones at 1 (= $6-5$) and $4(=6-2)$ in addition to the original tones at 2 and 5 .

Antialias Filters

If we wish to create samples at some fixed frequency ω_{s}, then to avoid aliasing we need to use a low-pass filter on the original waveform to remove any frequency content $\geq \omega_{s} / 2$.

The frequency response of human ears essentially drops to zero above 20 kHz . So the "Red Book" standard for CD Audio chose a 44.1 kHz sampling rate, yielding a Nyquist frequency of 22.05 kHz . The 2 kHz of elbow room is needed because practical antialiasing filters have finite slope...
$\mathrm{fs}=(3$ samples/line $)(490$ lines/frame $)(30$ frames $/ \mathrm{s})=44.1 \mathrm{kHz}$
More info: http://www.cs.columbia.edu/~hgs/audio/44.1.html

Digital Filters

Equation for an N -tap finite impulse response (FIR) filter:

What components are part of the $t_{P D}$ of this circuit? How does $t_{\text {PD }}$ grow as N gets larger?

Filter coefficients

- Use Matlab command: $b=\operatorname{fir} 1\left(N, \omega_{C} /\left(\omega_{S} / 2\right)\right)$
-N is the number of taps (we'll get $\mathrm{N}+1$ coefficients). Larger N gives sharper roll-off in filter response; usually want N to be as large as reasonably possible.
$-\omega_{c}$ is the cutoff frequency (3 kHz in Lab 5)
- ω_{S} is the sample frequency (48 kHz in Lab 5)
- The second argument to the fir1 command is the cutoff frequency as a fraction of the Nyquist frequency (i.e., half the sample rate).
- By default you get a lowpass filter, but can also ask for a highpass, bandpass, bandstop.
- The b coefficients are real numbers between 0 and 1 . But since we don't want to do floating point arithmetic, we usually scale them by some power of two and then round to integers.
- Since coefficients are scaled by 2^{s}, we'll have to re-scale the answer by dividing by 2^{S}. But this is easy - just get rid of the bottom S bits!

Retiming the FIR circuit

Apply the cut-set retiming transformation repeatedly...

Retimed FIR filter circuit

"Transposed Form" of a FIR filter

What components are part of the $t_{P D}$ of this circuit? How does $t_{\text {PD }}$ grow as N gets larger?
6.111 Fall 2019

Lecture 10

N-tap FIR: less hardware, N+1 cycles...

Lab 5a overview

Assignment: build a voice recorder that records and plays back 8-bit PCM data @ 6KHz

About 11 seconds of speech @ 6KHz

BRAM Operation

Lab 5a* w/ FIR filter

- Since we're down-sampling by a factor of 8 , to avoid aliasing (makes the recording sound "scratchy") we need to pass the incoming samples through a low-pass antialiasing filter to remove audio signal above 3 kHz (Nyquist frequency of a 6 kHz sample rate).

- We need a low-pass reconstruction filter (the same filter as for antialiasing!) when playing back the 6 kHz samples. Actually we'll run it at 48 kHz and achieve a 6 kHz playback rate by feeding it a sample, 7 zeros, the next sample, 7 more zeros, etc.

FIR Filter - Data Input

6.111 Fall 2019

Discrete Values

If we use N bits to encode the magnitude of one of the discretetime samples, we can capture 2^{N} possible values.

So we'll divide up the range of possible sample values into 2^{N} intervals and choose the index of the enclosing interval as the encoding for the sample value.

FIR Filter - Playback

6.111 Fall 2019

Lecture 10

Quantization Error

Note that when we quantize the scaled sample values we may be off by up to $\pm 1 / 2$ step from the true sampled values

Quantization Noise

Time Domain
$2^{N} \longrightarrow$ Max signal

Freq. Domain

NOISE $(j \omega)$

In most cases it's "white noise" with uniform frequency distribution

Decibel (dB) - 3dB point

$$
d B=20 \log \left(\frac{V_{o}}{V_{i}}\right) \quad d B=10 \log \left(\frac{P_{o}}{P_{i}}\right)
$$

$$
\log _{10}(2)=.301
$$

$$
100 \mathrm{~dB}=100,000=10^{5}
$$

3 dB point $=$?

$$
80 \mathrm{~dB}=10,000=10^{4}
$$

$$
60 \mathrm{~dB}=1,000=10^{3}
$$

half power point

Common Decibel Units

dB UNIT	reference	application
dbV	1 Volt rms	routine voltage measurements [comparisons!]
dBm	$\begin{aligned} & 1 \mathrm{~mW} \text { into } 50 \Omega \quad[0.224 \mathrm{~V}] \text { or } \\ & 600 \Omega[0.775 \mathrm{~V}] \end{aligned}$	radio-frequency $[50 \Omega$] or audio [600Ω] power measurements [in England, the dBu is used to mean 0.775 V reference without regard to impedance or power]
dB mV	1 millivolt rms	signal levels in cable systems
dbW	1 Watt	audio power amplifier output [usually into 8, 4, or 2Ω impedances]
dBf	1 femtowatt [10^{-15} watt]	communications and stereo receiver sensitivity [usually $50 \Omega, 75 \Omega$ unbalanced, or 300Ω balanced antenna input impedances]
dB (SPL)	$0.0002 \mu \mathrm{bar}$,$\quad=\quad 20 \mu \mathrm{~Pa}$ $[=$ Pascals $]$ $[1$ bar dynes $/ \mathrm{cm}^{2}$ $\sim 1 \mathrm{AT}]$	Sound Pressure Level measurements: the reference is the "threshold of hearing".

SNR: Signal-to-Noise Ratio

$S N R=10 \log _{10}\left(\frac{P_{\text {SIGNAL }}}{P_{\text {NOISE }}}\right)=10 \log _{10}\left(\frac{A_{\text {SIGNAL }}^{2}}{A_{\text {NOISE }}^{2}}\right)=20 \log _{10}\left(\frac{A_{\text {SIGNAL }}}{A_{\text {NOISE }}}\right)$
$\sim_{R M S}$ amplitude
SNR is measured in decibels (dB). Note that it's a logarithmic scale: if SNR increases by 3dB the ratio has increased by a factor 2. When applied to audible sounds: the ratio of normal speech levels to the faintest audible sound is $60-70 \mathrm{~dB}$.

Oversampling

To avoid aliasing we know that ω_{s} must be at least $2 \omega_{\mathrm{M}}$. Is there any
advantage to oversampling, i.e., $\omega_{\mathrm{s}}=\mathrm{K} \cdot 2 \omega_{\mathrm{M}}$?

Suppose we look at the frequency spectrum of quantized samples of a sine wave: (sample freq. $=\omega_{\mathrm{s}}$)

Total signal+noise power remains the same, so SNR is unchanged. But noise is spread over twice the freq. range so it's relative level has dropped.

$$
\alpha / 2 \xrightarrow[2\left(\omega_{s} / 2\right)]{\longrightarrow}
$$

Now let's use a low pass filter to eliminate half the noise! Note that we're not affecting the signal at all...

Oversampling+LPF reduces noise by $3 \mathrm{~dB} /$ octave

Bubble Level

- 3 axis transmitted, only x,y axis data used
- 16 bit 2's complement format
- 9600 baud, Isb first
- MEMS Accelerometer - MicroElectroMechanical Systems
- MEMS components generally 1-100 microns
- Silicon based - MEMS device fabricated on same silicon as circuits
- Circuits and digital processing key to MEMS

Movement sensing

Capacitance

- Accelerometers
- Acceleration - movement from one point to another
- Tilt sensing - measures inclination/angle with respect to gravity
- Gyroscopes
- Rotation sensing - measures angular rate.

MEMS Capacitors*

*6.777J OCW

2 Axis Acceleromter

Courtesy of Analog Devices, Inc. Used with permission.

Courtesy of Analog Devices, Inc. Used with permission

Giant "MEMS" Capacitor

Very small input range for "open loop" configuration

approximation

Mems

- Passenger sensor
- Tire pressure sensor
- Airbag deployment
- Phone rotation

Our Analog Building Block: OpAmp

The Power of (Negative) Feedback

$$
\frac{v_{\text {in }}+v_{\text {id }}}{R_{1}}+\frac{v_{\text {out }}+v_{\text {id }}}{R_{2}}=0 \quad v_{\text {id }}=\frac{v_{\text {out }}}{a} \quad \frac{v_{\text {in }}}{R_{1}}=-\frac{v_{\text {out }}}{a}\left[\frac{1}{R_{1}}+\frac{a}{R_{2}}+\frac{1}{R_{2}}\right]
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=-\frac{R_{2} a}{(1+a) R_{1}+R_{2}} \approx-\frac{R_{2}}{R_{1}}(\text { if } \quad a \gg 1)
$$

- Overall (closed loop) gain does not depend on open loop gain
- Trade gain for robustness
- Easier analysis approach: "virtual short circuit approach"
- $\mathrm{v}_{+}=\mathrm{v}_{-}=0$ if OpAmp is linear

Basic OpAmp Circuits

$V_{\text {out }} \approx V_{\text {in }}$
Differential Input

$v_{\text {out }} \approx \frac{R_{1}+R_{2}}{R_{1}} v_{\text {in }}$

$$
v_{\text {out }} \approx-\frac{1}{R C} \int_{-\infty}^{t} v_{\text {in }} d t
$$

OpAmp as a Comparator

Analog Comparator:

Is $\mathrm{V}+>\mathrm{V}$ - ? The Output is a DIGITAL signal

Analog Comparator: Analog to TTL
LM 311 Needs Pull-Up
LM311 uses a
single supply
voltage

Lecture 10

DAC: digital to analog converter

How can we convert a N-bit binary number to a voltage?

- Video signal generation
- Audio / RF "direct digital synthesis"
- Telecommunications (light modulation)
- Scientific \& Medical (ultrasound, ...)

R-2R Ladder DAC Architecture

R-2R Ladder achieves large current division ratios with only two resistor values

Quantization* A Graphical Example

How many bits are needed to represent 256 shades of gray (from white to black)?

Bits	Range		Bits	Range
1	2	5	32	
2	4	6	64	
3	8	7	128	
4	16	8	256	

* Acknowledgement: Quantization slides and photos by Prof Denny Freemen 6.003

Quantization: Images

Converting an image from a continuous representation to a discrete representation involves the same sort of issues.

This image has 280×280 pixels, with brightness quantized to 8 bits.

Quantizing Images

8 bit image

7 bit image

Quantizing Images

8 bit image

6 bit image

Quantizing Images

8 bit image

5 bit image

Quantizing Images

8 bit image

4 bit image

Quantizing Images

8 bit image

3 bit image

Quantizing Images

Quantizing Images

8 bit image

1 bit image

3 Bits Quantization

1 Bit Quantization + Noise

1 bit

Conclusions

- For a given application, select the resolution that meets the design target and cost target.
- For bits means higher cost, higher power consumption
- Digital processing may help.

Non-idealities in Data Conversion

Offset - a constant voltage offset that appears at the output when the digital input is 0

Binary code
Integral Nonlinearity - maximum deviation from the ideal analog output voltage

Gain error - deviation of slope from ideal value of 1

Differential nonlinearity - the largest increment in analog output for a 1-bit change

Binary code
6.111 Fall 2019

Binary code

Successive-Approximation A/D

- D/A converters are typically compact and easier to design. Why not A/D convert using a D/A converter and a comparator?
- DAC generates analog voltage which is compared to the input voltage
- If DAC voltage > input voltage then set that bit; otherwise, reset that bit
- This type of ADC takes a fixed amount of time proportional to the bit length

Comparator out

Example: 3-bit A/D conversion, 2 LSB $<\mathrm{V}_{\text {in }}<3$ LSB

Glitching and Thermometer D/A

- Glitching is caused when switching times in a D/A are not synchronized
- Example: Output changes from 011 to 100 - MSB switch is delayed
- Filtering reduces glitch but

Binary		Thermometer		
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

- One solution is a thermometer code D/A - requires $2^{\mathrm{N}}-1$ switches but no ratioed currents

Successive-Approximation A/D

Serial conversion takes a time equal to $\mathrm{N}\left(\mathrm{t}_{\mathrm{D} / \mathrm{A}}+\mathrm{t}_{\text {comp }}\right)$

Flash A/D Converter

- Brute-force A/D conversion
- Simultaneously compare the analog value with every possible reference value
- Fastest method of A/D conversion
- Size scales exponentially with precision (requires 2^{N} comparators)

So, what's the big deal?

- Can be run at high sampling rates, oversampling by, say, 8 or 9 octaves for audio applications; low power implementations
- Feedback path through the integrator changes how the noise is spread across the sampling spectrum.

- Pushing noise power to higher frequencies means more noise is eliminated by LPF: $\mathrm{N}^{\text {th }}$ order $\Sigma \Delta \mathrm{SNR}=\left(3+\mathrm{N}^{*} 6\right) \mathrm{dB} /$ octave

AD Supply Voltages Consideration

. 111 Fall 2019

Noise caused by current spikes in fast switching digital circuits:

$$
i_{c}=C \frac{d v}{d t}
$$

- $A V_{D D}$ Positive Analog Supply Voltage
- $\mathrm{AV}_{\mathrm{SS}}$ Analog Ground
- DV ${ }_{D D}$ Positive Digital Supply Voltage

DV ${ }_{\text {SS }}$ Digital Ground

Digital/Analog Grounds

Labkit Hardware

- Xilinx FPGA
- Logic analyzer pods
- 4 banks/pods of 16 data lines
- (analyzerN_clock) and a 16-bit data bus (analyzerN_data[15:0]) $\mathrm{N}=1,2,3,4$
- VGA video output
- RS-232 Serial IO
- PS/2 keyboard and mouse input
- AC97 audio input/output
- Intel standard for PC audio systems
- codec's ADCs and DACs operate at a 48 kHz sample rate, with 18 bits of precision
- 128Mbits Flash memory, (2) 512k x 36 ZBT SRAM

Labkit Hardware

