
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2019

Lecture PSet #7 of 8
Convolution Codes

Due: Tue 10/08/2019 Upload by 2:30p

Problem 1
This is the third of four parts in implementing a communications system. In the last LPset, CRC
was calculated. This LPset implements forward error correction (FEC). FEC can be used when it
is known beforehand that a received signal will be very weak and likely to contain errors
resulting in a high bit error rate (BER). This could be when the signal is transmitted over long
distance such as the Mars Rover, New Horizon or in the case of medical electronics, when the
transmitted power is very low by design, for example a tiny ultra-low power wireless
transmitter attached to a patient.

One example of FEC is convolution codes1. Convolution codes involve calculating parity bits and
then sending only the parity bits. At the receiver, the message can be recovered despite a high
BER. One elegant and efficient method for recovering the data is the Viterbi algorithm2
invented by Andrew Viterbi ’57.

A typical data transmitting system with FEC would append a CRC to the data stream, apply a
convolution encoder, interleave the data and transmit. (As with previous LPsets, this was
actually implemented with a FPGA as part of a research project.) In previous lecture LPsets you
have designed the CRC generator and the interleaver.

Your task will be to implement in Verilog a convolution encoder. A convolution encoder uses a
sliding window to calculate the parity bits. The size of the window is the constraint length (k).
The rate is the number of parity bits (r) expressed as 1/r , i.e. an encoder with two parity bits is
a rate ½ encoder. Increasing the number of parity bits and the constraint length increases the
resiliency to errors but at the cost of increased transmission time. In this problem we will use
rate ½ constraint length 4 code (k=4).

1 Fall 2011 6.02 Lecture Error Correction: Convolution Coding http://web.mit.edu/6.02/www/f2011/handouts/7.pdf
2 Fall 2011 6.02 Lecture Viterbi decoding http://web.mit.edu/6.02/www/f2011/handouts/8.pdf

http://web.mit.edu/6.02/www/f2011/handouts/7.pdf
http://web.mit.edu/6.02/www/f2011/handouts/8.pdf

A data stream is shown below with convolution code (k=4) using these generators g0 = 1,1,1,1
and g1 = 1,1,0,1. The parity bits are then

 ∑
−

=

−=
1

0
2mod])[][(][

k

j
ii jnxjgnp .

The parity bits are then sent as a single data stream:
 P1[0],P0[0],P1[1],P0[1],P1[2],P0[2], ...

(In practice extra bits (trellis termination bits) are appended to the data before FEC to bring the
convolution encoder to a known state. This helps in the decoding at the receiving end.)

Using the data with CRC appended from a previous LPset, implement a digital system with
Verilog that takes the data, generates the parity bits and stores the output in fec[95:0]. Notice
that a rate ½ encoder doubles the number bits transmitted. The input start pulses high for one
clock cycle when data is available. See the test bench for the exacting timing of data. When all
the parity bits are generated, done is asserted with fec[95:0] containing encoded data stream.
(In the actual implementation, data is streamed in a byte at a time thus requiring bit
manipulation between bytes in generating the parity bits – a more complex design!)

As in the CRC generator, the bit stream sent to the FEC encoder is MS bit first. For the input
data shown, the first eight bits sent to the convolution encoder input x[0], x[1], x[2] ... are six
zero followed by two ones corresponding to hex [03]. Since the first data bit is x[0], with a
constraint length (sliding window width) of four, set x[-1]= x[-2] = x[-3] = 0 to generate
P1[0],P0[0]. When start is asserted, input will be available on data.

 input data: 48'h03_01_02_03_30_3A

Since high throughput is required, done must be asserted as soon as the encoding is completed.
“done” can be the output of combinatorial logic since it is sample later on in the system.

FEC Verilog
Module

 clock

data

start

96

fec[95:0] = {P1[0],P0[0],P1[1],P0[1],... P1[47],P0[47]}

done

Here is how to get started.
Step 1: Using Vivado, create a new Verilog module with inputs and outputs as shown above.
Step 2: The Verilog module: when start is asserted, reset your FSM; reset counters and other
registers; and load any initial values required. When start is DE asserted, with each clock pulse,
shift in one bit of data and calculate P1[n],P0[n] beginning with P1[0],P0[0] and shift
into fec[95:0]. Note the ordering of the bits in fec[95:0]. After all parity bits have been
calculated, assert done.
Step 3: Create a behavior test bench and verify your design with a simulation using the process
outlined in LPset #6. You can use a 5ns clock in your test bench. The input data should be
48'h03_01_02_03_30_3A
Step 4: When done is asserted your encoding (using hex radix) should be

 fec[95:0] = 96'h000E_8C03_7C0D_F00E_828C_0E5E

Step 5: Take a screen shot showing fec[95:0] when done is asserted. Use hex radix for
fec[95:0]. Include the Verilog (Verilog module and test bench) and screen shot in one pdf file
and upload to the course website.

 Lpset grading rubric

 Grading
Comments in Verilog when needed

2 Verilog with comments meeting all the specs
1 Functional test bench
1 Screenshot showing fec[95:0] when done is asserted
5 Total Grade

In simulation, state values are unknown unless explicitly set. (Unknown values are shown in red
during simulation. Outputs not defined are shown in blue.) For a simulation to run correctly,
state variables must be initialized or explicitly set to known value at some point in the
simulation. This can be accomplished by using a reset or some other signal in your Verilog.

[Don’t panic! Though this problem is three pages long, the Verilog design should be a dozen
lines or so. It took me way longer to write this LPset and much longer for the actual design!]

Problem 2 [5 points]
In LPset #3, you got a little practice with the math behind a portion of Transmission-Minimized
Differential Signaling. In LPset #6 you wrote the first part of a TMDS pipeline. In this LPset
you’ll implement the rest of the TMDS encoder,

The full system you have been building is represented by the block diagram below. It takes in
an 8-bit data block, and produces a full 10-bit TMDS signal. This 10 bit signal would then be
transmitted one-bit at a time down a line. The TMDS transmitter is based on two stages:

• Stage 1: Converts the original 8 bit data to 9 bits using the encoding scheme discussed in
LPset #3. The goal of this stage is to minimize bit transitions. This is a stateless operation
where the output for a given input is based solely on the input.

• Stage 2: Converts the 9 bit output from stage 1 into a 10 bit output with the goal of
keeping the long-term running ratio of 1’s to 0’s to be as close as possible to 50/50 in
order to minimize any building up a DC voltage offset on the transmission line. This
module is stateful such that its output is based on both its current input and the
previous output. True TMDS uses a somewhat complicated ruleset, but for this problem
we’ll use an abbreviated, not entirely correct, one described below.

Write, test, and verify Stage 2. The system should have a one-cycle latency (one stage of D flip-
flops encountered going from s2_in to s2_out). The system should take in the 9 bit output from
stage 1 and do the following:
• Determine if there are more 1’s or 0’s in the 9 bit message.
• If there is a majority of 1’s:

o If the previous output had a majority of 1’s, bitwise invert the current data, append
a 1 as the 10th bit, and send out

o If the previous output had a majority of 0’s, append a 0 as the 10th bit and send out
• Otherwise (implied majority of 0’s):

o If the previous output had a majority of 1’s, append a 0 as the 10th bit and send out
o If the previous output had a majority of 0’s, bitwise invert the current data, append

a 1 as the 10th bit, and send out

The net result should be a system that transmits a signal that minimizes bit transitions within its
10 bit word, while also keeping the long term ratio of 1’s to 0’s on the line should stay roughly
close to 1:1 regardless of the data being transmitted (this latter operation minimizes the

buildup of a long-term DC voltage on the line which could mess with sensing circuitry on the
receive side).

We’ve included starter code and a testbench for development. The starter code includes a
fully-functioning TMDS receiver/decoder which is used in the testbench to analyze the output
of your TMDS transmitter/encoder. When running the testbench, you should expect a correctly
encoded signal to be decoded by the TMDS receiver/decoder two clock cycles later like shown
below:

Submit your Verilog and a screenshot of your test bench results.

	Lecture PSet #7 of 8
	Convolution Codes
	Due: Tue 10/08/2019 Upload by 2:30p
	Step 4: When done is asserted your encoding (using hex radix) should be
	fec[95:0] = 96'h000E_8C03_7C0D_F00E_828C_0E5E
	Lpset grading rubric

