
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2019

Lecture PSet #8 Last one!
Due: Fri 10/11/2019 5pm (Automatic Extension to Tue 10/15)

Upload solution as one pdf

Problem 1 (6 point) This is the last of four parts in implementing a communications
system. For this Lpset, we will optimize the process to calculate the CRC and generate the
parity bits for the (FEC) convolution encoder.

 0x03_01_02_03 + CRC: 30_3A

The complete process, in serial mode, requires 32 clock cycle to calculate the CRC
followed by 48 clock cycles for the convolution encoder totaling 80 clock cycles. Note
the CRC result is not required while the convolution encoder is processing the first four
bytes of data. Consider this faster approach: as CRC is being calculated, the convolution
encoder at the same time is generating parity bits for the first four bytes of data. After
the last data bit has been shifted in, CRC has been computed and is available. At this time
the input to the convolution encoder can be switched by control to the output of the CRC
registers.

Generating CRC for the four bytes takes 32 clock cycles. Convolution encoding the first
four bytes of data also takes 32 clock cycles. Another 16 clock cycle is required to
complete the encoding for the CRC for a total of 80 clock cycles. By taking advantage of
concurrent processing total processing is reduced from 80 clock cycles to 48 clock cycles.

[Total time can even be reduced further. At t=32, since all 16 bits of CRC are available,
the remaining 32 parity bits can be computed in parallel in one clock cycle! (not
required)]

Your task will be to implement in Verilog the process described above (without the
interleaver). Using your CRC Verilog from Lpset 6 and FEC Verilog from Lpset 7, modified
your design to take advantage of concurrency. Be sure to include the Verilog for CRC and
FEC in the report.

 input data: 32'h03_01_02_03

Here is how to get started.
Step 1: Create a new Verilog module with inputs and outputs as shown above.
Step 2: The Verilog module: when start is asserted, reset your FSM; reset counters and
other registers; and load any initial values required. With each clock pulse, shift in one bit
of data, begin calculating CRC and generating parity bits using rate ½ constraint length 4
code (k=4) using these generators g0 = 1,1,1,1 and g1 = 1,0,1,1. [Same as Lpset 6 &
Lpset 7]
Step 3: After 32 or 33 clock cycles (implementation dependent), use the output of the
CRC register to complete the generation of the remaining parity bits. You may use any
method to computer the remaining parity bits. After all parity bits have been calculated,
assert done.
Step 4: Create a behavior test bench (Verilog Test Fixture) and verify your design with a
simulation using the process outlined in Lpset 6. You can use a 5ns clock in your test
bench. The input data should be 32'h03_01_02_03
Step 5: When done is asserted your encoding (using hex radix) should be

 fec[95:0] = 96'h000E_8C03_7C0D_F00E_828C_0E5E

Step 6: Take a screen shot of your system at 30 ≤ t ≤ 34 showing the control signal(s)
and FSM state(s) as the input to the convolution encoder is switched from data input to
the output of the CRC.

FEC Verilog
Module

 clock

data

start

7

fec[95:0] = {P1[0],P0[0],P1[1],P0[1],... P1[47],P0[47]}

done

cycle counter

FSM state(s) + control signal(s)

Step 7: Take a screen shot showing fec[95:0] when done is asserted. Use hex radix for
fec[95:0]. Include the Verilog (Verilog module and test bench) and screen shot in one pdf
file and upload to the course website.

 Lpset grading rubric

 Grading
1 Easy to read & formatted Verilog (See "Verilog Editors" tab for help.)

Include Verilog for CRC and FEC in the PDF.
3 Verilog meeting all the specs
1 Screenshot at 30 ≤ t ≤ 34 showing control signals & FSM states
1 Screenshot showing fec[95:0] when done is asserted
6 Total Grade

Problem 2 (4 points total) In the pong lab, pixel, vsync, hsync, and blank are signals set to
the VGA output. The system clock is 65mhz with a 15ns period. Assume the
combinatorial logic generating a blob has a 4ns tpd. Generating a round ball requires
additional logic using a multiply with a 12ns tpd (this is an older FPGA; the Artix-7 has a
4ns tpd for a multiple.) As a result this additional block added to the other logic does not
meet the timing requirements (12ns + 4ns > 15ns clock). [Solution to this problem will be
used in Lab 5.]

always @ * begin // generate round puck
 // compute x-xcenter and y-ycenter
 radiussquared = RADIUS*RADIUS; // RADIUS is a paramater
 deltax = (hcount > (x+RADIUS)) ? (hcount-(x+RADIUS)) : ((x+RADIUS)-hcount);
 deltay = (vcount > (y+RADIUS)) ? (vcount-(y+RADIUS)) : ((y+RADIUS)-vcount);
 // check if distance is less than radius squared
 if(deltax*deltax+deltay*deltay <= radiussquared)
 pixel = COLOR;
 else pixel = 0;
 end

(A) Pipeline the above Verilog. (Logic with the longest tpd should be pipelined
separately.) Use correct blocking/non-blocking assignments. Assume hcount, vcount, x
and y are already registered glitch free inputs clocked by the system clock:
clock_65mhz. [2 point]

(B) Indicate any additional register(s) required in this block diagram for correct VGA
timing. The round puck Verilog is part of the pong game block. Indicate the number
of registers per pipelined signal. [2 point] Note – you can copy and paste the image
below for your solution.

Upload solutions to Problems 1 and 2 as one pdf file.

	Step 5: When done is asserted your encoding (using hex radix) should be
	fec[95:0] = 96'h000E_8C03_7C0D_F00E_828C_0E5E
	Lpset grading rubric

